Kaggle NY Taxi trip duration prediction¶
In [98]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# set Jupyter to display ALL output from a cell (not just last output)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
# set pandas and numpy options to make print format nicer
pd.set_option("display.width",100)
pd.set_option("display.max_columns",1000)
pd.set_option('display.max_colwidth', 80)
pd.set_option('display.max_rows', 500)
np.set_printoptions(linewidth=120, threshold=5000, edgeitems=10, suppress=True)
import warnings # supress annoying seaborn/pandas deprecation warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
Read into dataframes, and add new features¶
In [128]:
%%time
# create train and test dataframes, with parsed data fields
train = pd.read_csv('train.csv', parse_dates=['pickup_datetime','dropoff_datetime'])
test = pd.read_csv('test.csv', parse_dates=['pickup_datetime'])
test_id = test.id.copy() # save test ids for later use in submitting files
print(train.shape, test.shape)
(1458644, 11) (625134, 9) CPU times: user 5.23 s, sys: 496 ms, total: 5.72 s Wall time: 5.75 s
In [129]:
%%time
# create new features from location, datetime fields, and others
def great_circle_distance(lat1, long1, lat2, long2):
EARTH_RADIUS = 6371
lat1 = np.radians(lat1); lat2 = np.radians(lat2); long1 = np.radians(long1); long2 = np.radians(long2)
lat_diff = lat2 - lat1; long_diff = long2 - long1
temp = np.sin(lat_diff * 0.5) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(long_diff * 0.5) ** 2
return 2 * EARTH_RADIUS * np.arcsin(np.sqrt(temp))
def manhattan_distance(lat1, long1, lat2, long2):
a = great_circle_distance(lat1, long1, lat1, long2)
b = great_circle_distance(lat1, long1, lat2, long1)
return a + b
def bearing(lat1, long1, lat2, long2):
EARTH_RADIUS = 6371 # in km
long_diff = np.radians(long2 - long1)
lat1 = np.radians(lat1); lat2 = np.radians(lat2); long1 = np.radians(long1); long2 = np.radians(long2)
long_diff = long2 - long1
y = np.sin(long_diff) * np.cos(lat2)
x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(long_diff)
return np.degrees(np.arctan2(y, x))
ny_public_holidays = pd.Series([pd.Timestamp('2016-01-01'), pd.Timestamp('2016-01-18'), pd.Timestamp('2016-02-15'),
pd.Timestamp('2016-05-30'), pd.Timestamp('2016-07-04'), pd.Timestamp('2016-09-05'),
pd.Timestamp('2016-10-10'), pd.Timestamp('2016-11-11'), pd.Timestamp('2016-11-24'),
pd.Timestamp('2016-12-26')])
train = train[train.trip_duration < 87000] # remove 4 outliers, more than 1 day
coords = np.vstack((train[['pickup_latitude', 'pickup_longitude']].values,
train[['dropoff_latitude', 'dropoff_longitude']].values,
test[['pickup_latitude', 'pickup_longitude']].values,
test[['dropoff_latitude', 'dropoff_longitude']].values))
from sklearn.decomposition import PCA # create PCA model of locations to extract max differences
pca = PCA().fit(coords)
from sklearn.cluster import MiniBatchKMeans # create cluster of pickup and dropoff locations
kmeans = MiniBatchKMeans(n_clusters=100, batch_size=10000).fit(coords) # was 100 clusters
# make same new features in both test and train
for data in (train, test):
data['store_and_fwd_flag'] = data.store_and_fwd_flag.map({'N':0, 'Y':1})
data['pickup_month_of_year'] = data.pickup_datetime.dt.month
data['pickup_day_of_week'] = data.pickup_datetime.dt.dayofweek
data['pickup_day_of_month'] = data.pickup_datetime.dt.day
data['pickup_day_of_year'] = data.pickup_datetime.dt.dayofyear
data['pickup_hour_of_day'] = data.pickup_datetime.dt.hour
data['pickup_minute_of_day'] = np.round((data.pickup_datetime.dt.hour * 60 + \
data.pickup_datetime.dt.minute + \
data.pickup_datetime.dt.second / 60)).astype(int)
data['pickup_quarter_hour'] = np.round((data.pickup_datetime.dt.hour * 4 + \
(data.pickup_datetime.dt.minute +
data.pickup_datetime.dt.second / 60) / 15)).astype(int)
data['holiday'] = data.pickup_datetime.dt.date.astype('datetime64[ns]'). \
isin(ny_public_holidays).astype(int)
data['distance_great_circle']= great_circle_distance(data['pickup_latitude'].values,
data['pickup_longitude'].values,
data['dropoff_latitude'].values,
data['dropoff_longitude'].values)
data['distance_manhattan'] = manhattan_distance(data['pickup_latitude'].values,
data['pickup_longitude'].values,
data['dropoff_latitude'].values,
data['dropoff_longitude'].values)
data['direction'] = bearing(data['pickup_latitude'].values, data['pickup_longitude'].values,
data['dropoff_latitude'].values, data['dropoff_longitude'].values)
data['center_latitude'] = (data['pickup_latitude'].values + data['dropoff_latitude'].values) / 2
data['center_longitude'] = (data['pickup_longitude'].values + data['dropoff_longitude'].values) / 2
temp_pickup = pca.transform(data[['pickup_latitude', 'pickup_longitude']])
temp_center = pca.transform(data[['center_latitude', 'center_longitude']])
temp_dropoff = pca.transform(data[['dropoff_latitude', 'dropoff_longitude']])
data['pickup_pca0'] = temp_pickup[:, 0]
data['pickup_pca1'] = temp_pickup[:, 1]
data['center_pca0'] = temp_center[:, 0]
data['center_pca1'] = temp_center[:, 1]
data['dropoff_pca0'] = temp_dropoff[:, 0]
data['dropoff_pca1'] = temp_dropoff[:, 1]
data['pickup_cluster'] = kmeans.predict(data[['pickup_latitude', 'pickup_longitude']])
data['center_cluster'] = kmeans.predict(data[['center_latitude', 'center_longitude']])
data['dropoff_cluster'] = kmeans.predict(data[['dropoff_latitude', 'dropoff_longitude']])
# fields only on train dataframe (used for identifying problem rows, not for model training)
# train['speed_great_circle'] = train.distance_great_circle / train.trip_duration * 60 * 60
# train['speed_manhattan'] = train.distance_manhattan / train.trip_duration * 60 * 60
train['log_trip_duration'] = np.log(train['trip_duration'] + 1)
train_y = train.log_trip_duration
fr1 = pd.read_csv('./data/fastest_routes_train_part_1.csv', usecols=['id','total_distance','total_travel_time','number_of_steps'])
fr2 = pd.read_csv('./data/fastest_routes_train_part_2.csv', usecols=['id', 'total_distance','total_travel_time','number_of_steps'])
test_street_info = pd.read_csv('./data/fastest_routes_test.csv',usecols=['id','total_distance','total_travel_time','number_of_steps'])
train_street_info = pd.concat((fr1, fr2))
train = train.merge(train_street_info, how='left', on='id')
test = test.merge(test_street_info, how='left', on='id')
train_backup = train.copy()
CPU times: user 34.3 s, sys: 6.55 s, total: 40.9 s Wall time: 22 s
In [45]:
#adding weather gives worse results!!!
# weather = pd.read_csv('./data/KNYC_Metars.csv', parse_dates=['Time'])
# weather.head(3)
# weather['snow']= 1*(weather.Events=='Snow') + 1*(weather.Events=='Fog\n\t,\nSnow')
# weather['year'] = weather['Time'].dt.year
# weather['pickup_month_of_year'] = weather['Time'].dt.month
# weather['pickup_day_of_month'] = weather['Time'].dt.day
# weather['pickup_hour_of_day'] = weather['Time'].dt.hour
# # weather = weather[weather['year'] == 2016][['pickup_month_of_year','pickup_day_of_month','pickup_hour_of_day',
# # 'Temp.','Windchill', 'Heat Index','Humidity','Pressure', 'Dew Point',
# # 'Visibility','Wind Speed','Gust Speed', 'Precip','snow']]
# weather = weather[weather['year'] == 2016][['pickup_month_of_year','pickup_day_of_month','pickup_hour_of_day',
# 'Dew Point', 'Temp.', 'Pressure']]
# weather.head(3)
# train = pd.merge(train, weather, on=['pickup_month_of_year', 'pickup_day_of_month', 'pickup_hour_of_day'], how='left')
# test = pd.merge(test, weather, on=['pickup_month_of_year', 'pickup_day_of_month', 'pickup_hour_of_day'], how='left')
# train_backup = train.copy()
Out[45]:
Time | Temp. | Windchill | Heat Index | Humidity | Pressure | Dew Point | Visibility | Wind Dir | Wind Speed | Gust Speed | Precip | Events | Conditions | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2015-12-31 02:00:00 | 7.8 | 7.1 | NaN | 0.89 | 1017.0 | 6.1 | 8.0 | NNE | 5.6 | 0.0 | 0.8 | None | Overcast |
1 | 2015-12-31 03:00:00 | 7.2 | 5.9 | NaN | 0.90 | 1016.5 | 5.6 | 12.9 | Variable | 7.4 | 0.0 | 0.3 | None | Overcast |
2 | 2015-12-31 04:00:00 | 7.2 | NaN | NaN | 0.90 | 1016.7 | 5.6 | 12.9 | Calm | 0.0 | 0.0 | 0.0 | None | Overcast |
Out[45]:
pickup_month_of_year | pickup_day_of_month | pickup_hour_of_day | Dew Point | Temp. | Pressure | |
---|---|---|---|---|---|---|
22 | 1 | 1 | 0 | -2.2 | 5.6 | 1018.8 |
23 | 1 | 1 | 1 | -3.3 | 5.6 | 1018.5 |
24 | 1 | 1 | 2 | -3.9 | 5.6 | 1017.9 |
In [72]:
# adding in dropoff and pickup cluster details - makes score worse!!
# group_freq = '60min'
# df_all = pd.concat((train, test))[['id', 'pickup_datetime', 'pickup_cluster', 'dropoff_cluster']]
# train['pickup_datetime_group'] = train['pickup_datetime'].dt.round(group_freq)
# test['pickup_datetime_group'] = test['pickup_datetime'].dt.round(group_freq)
# # Count trips over 60min
# df_counts = df_all.set_index('pickup_datetime')[['id']].sort_index()
# df_counts['count_60min'] = df_counts.isnull().rolling(group_freq).count()['id']
# train = train.merge(df_counts, on='id', how='left')
# test = test.merge(df_counts, on='id', how='left')
# # Count how many trips are going to each cluster over time
# dropoff_counts = df_all \
# .set_index('pickup_datetime') \
# .groupby([pd.TimeGrouper(group_freq), 'dropoff_cluster']) \
# .agg({'id': 'count'}) \
# .reset_index().set_index('pickup_datetime') \
# .groupby('dropoff_cluster').rolling('240min').mean() \
# .drop('dropoff_cluster', axis=1) \
# .reset_index().set_index('pickup_datetime').shift(freq='-120min').reset_index() \
# .rename(columns={'pickup_datetime': 'pickup_datetime_group', 'id': 'dropoff_cluster_count'})
# train['dropoff_cluster_count'] = train[['pickup_datetime_group', 'dropoff_cluster']]. \
# merge(dropoff_counts, on=['pickup_datetime_group', 'dropoff_cluster'], how='left')['dropoff_cluster_count']. \
# fillna(0)
# test['dropoff_cluster_count'] = test[['pickup_datetime_group', 'dropoff_cluster']]. \
# merge(dropoff_counts, on=['pickup_datetime_group', 'dropoff_cluster'], how='left')['dropoff_cluster_count'].fillna(0)
# df_all = pd.concat((train, test))[['id', 'pickup_datetime', 'pickup_cluster', 'dropoff_cluster']]
# pickup_counts = df_all \
# .set_index('pickup_datetime') \
# .groupby([pd.TimeGrouper(group_freq), 'pickup_cluster']) \
# .agg({'id': 'count'}) \
# .reset_index().set_index('pickup_datetime') \
# .groupby('pickup_cluster').rolling('240min').mean() \
# .drop('pickup_cluster', axis=1) \
# .reset_index().set_index('pickup_datetime').shift(freq='-120min').reset_index() \
# .rename(columns={'pickup_datetime': 'pickup_datetime_group', 'id': 'pickup_cluster_count'})
# train['pickup_cluster_count'] = train[['pickup_datetime_group', 'pickup_cluster']].merge(pickup_counts, on=['pickup_datetime_group', 'pickup_cluster'], how='left')['pickup_cluster_count'].fillna(0)
# test['pickup_cluster_count'] = test[['pickup_datetime_group', 'pickup_cluster']].merge(pickup_counts, on=['pickup_datetime_group', 'pickup_cluster'], how='left')['pickup_cluster_count'].fillna(0)
# train = train.drop(['count_60min','pickup_datetime_group'], axis=1)
# test = test.drop(['count_60min','pickup_datetime_group'], axis=1)
# train_backup = train.copy()
Perform EDA on fields¶
In [75]:
train.head(3)
test.head(3)
train.shape
test.shape
Out[75]:
id | vendor_id | pickup_datetime | dropoff_datetime | passenger_count | pickup_longitude | pickup_latitude | dropoff_longitude | dropoff_latitude | store_and_fwd_flag | trip_duration | pickup_month_of_year | pickup_day_of_week | pickup_day_of_month | pickup_day_of_year | pickup_hour_of_day | pickup_minute_of_day | pickup_quarter_hour | holiday | distance_great_circle | distance_manhattan | direction | center_latitude | center_longitude | pickup_pca0 | pickup_pca1 | center_pca0 | center_pca1 | dropoff_pca0 | dropoff_pca1 | pickup_cluster | center_cluster | dropoff_cluster | speed_great_circle | speed_manhattan | log_trip_duration | total_distance | total_travel_time | number_of_steps | dropoff_cluster_count | pickup_cluster_count | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | id2875421 | 2 | 2016-03-14 17:24:55 | 2016-03-14 17:32:30 | 1 | -73.982155 | 40.767937 | -73.964630 | 40.765602 | 0 | 455 | 3 | 0 | 14 | 74 | 17 | 1045 | 70 | 0 | 1.498521 | 1.735433 | 99.970196 | 40.766769 | -73.973392 | 0.007691 | 0.017053 | -0.000988 | 0.015374 | -0.009667 | 0.013695 | 29 | 10 | 95 | 11.856428 | 13.730901 | 6.122493 | 2009.1 | 164.9 | 5.0 | 8.50 | 25.25 |
1 | id2377394 | 1 | 2016-06-12 00:43:35 | 2016-06-12 00:54:38 | 1 | -73.980415 | 40.738564 | -73.999481 | 40.731152 | 0 | 663 | 6 | 6 | 12 | 164 | 0 | 44 | 3 | 0 | 1.805507 | 2.430506 | -117.153768 | 40.734858 | -73.989948 | 0.007677 | -0.012371 | 0.017411 | -0.015512 | 0.027145 | -0.018652 | 27 | 93 | 96 | 9.803659 | 13.197318 | 6.498282 | 2513.2 | 332.0 | 6.0 | 6.25 | 6.00 |
2 | id3858529 | 2 | 2016-01-19 11:35:24 | 2016-01-19 12:10:48 | 1 | -73.979027 | 40.763939 | -74.005333 | 40.710087 | 0 | 2124 | 1 | 1 | 19 | 19 | 11 | 695 | 46 | 0 | 6.385098 | 8.203575 | -159.680165 | 40.737013 | -73.992180 | 0.004803 | 0.012879 | 0.019513 | -0.013229 | 0.034222 | -0.039337 | 65 | 93 | 85 | 10.822201 | 13.904365 | 7.661527 | 11060.8 | 767.6 | 16.0 | 8.00 | 13.00 |
Out[75]:
id | vendor_id | pickup_datetime | passenger_count | pickup_longitude | pickup_latitude | dropoff_longitude | dropoff_latitude | store_and_fwd_flag | pickup_month_of_year | pickup_day_of_week | pickup_day_of_month | pickup_day_of_year | pickup_hour_of_day | pickup_minute_of_day | pickup_quarter_hour | holiday | distance_great_circle | distance_manhattan | direction | center_latitude | center_longitude | pickup_pca0 | pickup_pca1 | center_pca0 | center_pca1 | dropoff_pca0 | dropoff_pca1 | pickup_cluster | center_cluster | dropoff_cluster | total_distance | total_travel_time | number_of_steps | dropoff_cluster_count | pickup_cluster_count | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | id3004672 | 1 | 2016-06-30 23:59:58 | 1 | -73.988129 | 40.732029 | -73.990173 | 40.756680 | 0 | 6 | 3 | 30 | 182 | 23 | 1440 | 96 | 0 | 2.746426 | 2.913304 | -3.595224 | 40.744354 | -73.989151 | 0.015761 | -0.018442 | 0.016058 | -0.006078 | 0.016356 | 0.006286 | 11 | 38 | 84 | 3795.9 | 424.6 | 4 | 0.0 | 0.0 |
1 | id3505355 | 1 | 2016-06-30 23:59:53 | 1 | -73.964203 | 40.679993 | -73.959808 | 40.655403 | 0 | 6 | 3 | 30 | 182 | 23 | 1440 | 96 | 0 | 2.759239 | 3.104805 | 172.278835 | 40.667698 | -73.962006 | -0.005072 | -0.071792 | -0.006544 | -0.084195 | -0.008016 | -0.096597 | 8 | 8 | 57 | 2904.5 | 200.0 | 4 | 0.0 | 0.0 |
2 | id1217141 | 1 | 2016-06-30 23:59:47 | 1 | -73.997437 | 40.737583 | -73.986160 | 40.729523 | 0 | 6 | 3 | 30 | 182 | 23 | 1440 | 96 | 0 | 1.306155 | 1.846340 | 133.326248 | 40.733553 | -73.991798 | 0.024727 | -0.012352 | 0.019335 | -0.016705 | 0.013943 | -0.021059 | 42 | 93 | 11 | 1499.5 | 193.2 | 4 | 0.0 | 0.0 |
Out[75]:
(1458640, 41)
Out[75]:
(625134, 36)
In [236]:
# check distribution of vendor_id
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(131)
_ = sns.countplot(train.vendor_id)
_ = plt.subplot(132)
_ = sns.barplot(x=train.vendor_id, y=train.trip_duration, ci=None)
_ = plt.subplot(133)
_ = plt.title('Trip Duration Distribution by Vendor Id')
_ = sns.distplot(train[(train.trip_duration<2500) & (train.vendor_id==2)].trip_duration, bins=100, kde=False)
_ = sns.distplot(train[(train.trip_duration<2500) & (train.vendor_id==1)].trip_duration, bins=100, kde=False)
# confidence intervals dont overlap so there IS a statistical difference
# import statsmodels.stats.api as sms
# dist2 = train[train.vendor_id==2].trip_duration.values
# dist1 = train[train.vendor_id==1].trip_duration.values
# dist1.mean(), sms.DescrStatsW(dist1).tconfint_mean()
# dist2.mean(), sms.DescrStatsW(dist2).tconfint_mean()
In [237]:
#check number of trips by various time periods
print('Datetime Range', train.pickup_datetime.min(), '->', train.pickup_datetime.max())
_ = plt.figure(figsize=(18,6))
_ = plt.title("Trips per day")
_ = sns.countplot(train.pickup_day_of_year)
_ = plt.xlim(-1,365//2)
for holiday in ny_public_holidays.dt.dayofyear:
_ = plt.axvline(x=holiday-1, color='r', linestyle='--')
_ = plt.figure(figsize=(18,6))
_ = plt.title("Trips per Quarter Hour during day")
_ = sns.countplot(train.pickup_quarter_hour)
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(141)
_ = plt.title("Trips per day of week")
_ = sns.countplot(train.pickup_day_of_week)
_ = plt.subplot(142)
_ = plt.title("Trips per day of month")
_ = sns.countplot(train.pickup_day_of_month)
_ = plt.subplot(143)
_ = plt.title("Trips per hour of day")
_ = sns.countplot(train.pickup_hour_of_day)
_ = plt.subplot(144)
_ = plt.title("Trips per Month")
_ = sns.countplot(train.pickup_month_of_year)
_ = plt.tight_layout()
Datetime Range 2016-01-01 00:00:17 -> 2016-06-30 23:59:39
In [238]:
# show trip durations by various time periods
_ = plt.figure(figsize=(18,6))
_ = plt.title("Trip Duration by day of year")
_ = sns.barplot(x=train.pickup_day_of_year, y=train.trip_duration, ci=None)
for holiday in ny_public_holidays.dt.dayofyear:
_ = plt.axvline(x=holiday-1, color='r', linestyle='--')
_ = plt.figure(figsize=(18,6))
_ = plt.title("Trip Duration by Quarter Hour during day")
_ = sns.barplot(x=train.pickup_quarter_hour, y=train.trip_duration, ci=None)
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(141)
_ = plt.title("Trip Duration per day of week")
_ = sns.barplot(x=train.pickup_day_of_week, y=train.trip_duration, ci=None)
_ = plt.subplot(142)
_ = plt.title("Trip Duration per day of month")
_ = sns.barplot(x=train.pickup_day_of_month, y=train.trip_duration, ci=None)
_ = plt.subplot(143)
_ = plt.title("Trip Duration per hour of day")
_ = sns.barplot(x=train.pickup_hour_of_day, y=train.trip_duration, ci=None)
_ = plt.subplot(144)
_ = plt.title("Trip Duration per Month")
_ = sns.barplot(x=train.pickup_month_of_year, y=train.trip_duration, ci=None)
# check distribution of holiday flag
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(141)
_ = sns.countplot(train.holiday)
_ = plt.subplot(142)
_ = plt.title("Trip Duration by Holiday Flag")
_ = sns.barplot(x=train.holiday, y=train.trip_duration, ci=None)
_ = plt.subplot(143)
_ = plt.title('Trip Duration on Holidays')
_ = sns.distplot(train[(train.trip_duration<2500) & (train.holiday)].trip_duration, bins=50, kde=False)
_ = plt.subplot(144)
_ = plt.title('Trip Duration on NON-Holidays')
_ = sns.distplot(train[(train.trip_duration<2500) & ~(train.holiday)].trip_duration, bins=50, kde=False)
_ = plt.tight_layout()
In [239]:
# check distribution of passenger_count
#train.passenger_count.value_counts()
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(121)
_ = sns.countplot(train.passenger_count)
_ = plt.subplot(122)
_ = plt.title("Trip Duration by Passenger Count")
_ = sns.barplot(x=train.passenger_count, y=train.trip_duration, ci=None)
_ = plt.show()
# confidence intervals dont overlap so there IS a statistical difference
import statsmodels.stats.api as sms
print('Mean trip duration and confidence intervals for trip duration for each passenger count')
for count in sorted(train.passenger_count.unique()):
distribution = train[train.passenger_count==count].trip_duration.values
count, distribution.mean(), sms.DescrStatsW(distribution).tconfint_mean()
Mean trip duration and confidence intervals for trip duration for each passenger count
Out[239]:
(0, 1718.4333333333334, (-1141.8081375960392, 4578.6748042627059))
Out[239]:
(1, 922.9584727010257, (917.31867619429613, 928.59826920775527))
Out[239]:
(2, 995.71793055245178, (982.02972072384523, 1009.4061403810583))
Out[239]:
(3, 1028.2362762121011, (998.45478378980408, 1058.017768634398))
Out[239]:
(4, 1053.5297493310802, (1009.4563394841388, 1097.6031591780215))
Out[239]:
(5, 1070.2321739575864, (1039.5145211999172, 1100.9498267152555))
Out[239]:
(6, 1061.3552231394699, (1022.3929175627042, 1100.3175287162355))
Out[239]:
(7, 19.666666666666668, (7.1634477074449006, 32.169885625888433))
/Users/graham/anaconda/lib/python3.6/site-packages/statsmodels/stats/weightstats.py:224: RuntimeWarning: invalid value encountered in double_scalars return std / np.sqrt(self.sum_weights - 1)
Out[239]:
(8, 104.0, (nan, nan))
Out[239]:
(9, 560.0, (nan, nan))
In [240]:
# check distribution of store and forward flag
#train.store_and_fwd_flag.value_counts()
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(141)
_ = sns.countplot(train.store_and_fwd_flag)
_ = plt.subplot(142)
_ = plt.title("Trip Duration by Store and Forward Flag")
_ = sns.barplot(x=train.store_and_fwd_flag, y=train.trip_duration, ci=None)
_ = plt.subplot(143)
_ = plt.title("Trip Duration with Store and Forward Flag=False")
_ = sns.distplot(train[(train.trip_duration<2500) & (train.store_and_fwd_flag==0)].trip_duration, bins=50, kde=False)
_ = plt.subplot(144)
_ = plt.title("Trip Duration with Store and Forward Flag=True")
_ = sns.distplot(train[(train.trip_duration<2500) & (train.store_and_fwd_flag==1)].trip_duration, bins=50, kde=False)
In [241]:
# check distribution of distance (great circle) - maybe should model on log(dist) to get a more normal distribution
_ = plt.figure(figsize=(18,6))
_ = plt.subplot(121)
_ = plt.title("Trip Distance Distribution (great circle)")
_ = sns.distplot(train.distance_great_circle, bins=100, kde=False)
_ = plt.subplot(122)
_ = plt.title("Trip Distance Distribution (great circle) < 50km")
_ = sns.distplot(train[train.distance_great_circle<25].distance_great_circle,bins=100, kde=False)
In [242]:
# check clustering is working ok
N= 200000 # filter a subset for faster plotting
_ = plt.figure(figsize=(18,12))
_ = plt.scatter(train.pickup_longitude.values[:N], train.pickup_latitude.values[:N], s=10, lw=0,
c=train.pickup_cluster[:N].values, cmap='tab20', alpha=0.2)
_ = plt.xlim((-74.05, -73.75))
_ = plt.ylim((40.63, 40.88))
_ = plt.xlabel('Longitude')
_ = plt.ylabel('Latitude')
In [243]:
# investigate overall trip duration distribution
_ = plt.figure(figsize=(18,6))
_ = plt.title('Long Duration Trips')
_ = sns.distplot(train.trip_duration[train.trip_duration> 22*60*60], bins=200, kde=False)
_ = plt.figure(figsize=(18,6))
_ = plt.title('Middle Duration Trips')
_ = sns.distplot(train.trip_duration[train.trip_duration< 60*60], bins=200, kde=False)
_ = plt.figure(figsize=(18,6))
_ = plt.title('Short Duration Trips')
_ = sns.distplot(train.trip_duration[train.trip_duration< 5*60], bins=299, kde=False)
In [12]:
%%time
# scatter plot of all fields vs trip_duration - takes a LONG time to run
_ = plt.figure(figsize=(18,40))
fields = [field for field in train.columns
if train[field].dtype in [np.int64, np.float64] and field not in ['trip_duration','log_trip_duration']]
for count, field in enumerate(fields):
_ = plt.subplot(len(fields) // 3 + 1, 3, count+1)
_ = plt.scatter(x=field, y='trip_duration', data=train, s=5, alpha=0.3, marker='o')
_ = plt.title(field + ' vs Trip Duration')
_ = plt.xlabel(field)
_ = plt.ylabel('trip_duration')
plt.tight_layout()
CPU times: user 49.2 s, sys: 397 ms, total: 49.6 s Wall time: 49.8 s
In [99]:
# check for (linear) correlations between predictor variables and trip_duration
corr = np.round(train.corr(),2)
_ = plt.figure(figsize=(18,14))
_ = sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True)
Prepare Data for modelling¶
In [136]:
# create data for model training/validation and filter to optimise training
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
train = train_backup.copy() # refresh train from backup (to allow repeated filtering below)
train_y = train.log_trip_duration
drop_rows = np.concatenate([
train[train.trip_duration > 4000].index.values, # remove long duration trips to improve XGBoost
])
drop_columns = ['id', 'pickup_datetime', 'dropoff_datetime', 'trip_duration',
'log_trip_duration', 'speed_great_circle', 'speed_manhattan']
feature_names = [feature for feature in train.columns if feature not in drop_columns]
Xtrain, Xvalid, ytrain, yvalid = train_test_split(train[feature_names], train_y, test_size=0.1, random_state=2)
Xtest = test[feature_names]
# filter training set only (should NOT filter validation set)
print('Before Xtrain= {0}, Xvalid= {1}, Xtest= {2}'.format(Xtrain.shape, Xvalid.shape, Xtest.shape))
# filtering not required for XGBoost
# Xtrain = Xtrain[(Xtrain.trip_duration < 24 * 60 * 60) & # get rid of 'noisy' long trips that skew predictions
# (~Xtrain.passenger_count.isin([0,7,8,9])) &
# (Xtrain.pickup_latitude > 40) & (Xtrain.pickup_latitude < 41.5) &
# (Xtrain.pickup_longitude > -75) & (Xtrain.pickup_longitude < -73) &
# (Xtrain.distance_great_circle < 99) &
# ~((Xtrain.speed_great_circle > 60) & (Xtrain.trip_duration < 60)) &
# (Xtrain.speed_great_circle < 120)].index
Xtrain = Xtrain.drop(drop_rows, errors='ignore')
ytrain = ytrain.drop(drop_rows, errors='ignore')
print('After Xtrain= {0}, Xvalid= {1}, Xtest= {2}'.format(Xtrain.shape, Xvalid.shape, Xtest.shape))
# scaling doesnt seem to do much for Ridge, but it does make coefs represent importance
# scaler = StandardScaler()
# _ = scaler.fit(train[feature_names])
# Xtrain_sc = scaler.transform(Xtrain)
# Xvalid_sc = scaler.transform(Xvalid)
# Xtest_sc = scaler.transform(Xtest)
Before Xtrain= (1312776, 32), Xvalid= (145864, 32), Xtest= (625134, 32) After Xtrain= (1305276, 32), Xvalid= (145864, 32), Xtest= (625134, 32)
XGBoost Model and Submission Generation¶
Performs really well (as usual)
In [151]:
%%time
import xgboost as xgb
from sklearn.metrics import mean_squared_error
dtrain = xgb.DMatrix(Xtrain, label=ytrain)
dvalid = xgb.DMatrix(Xvalid, label=yvalid)
watchlist = [(dtrain, 'train'), (dvalid, 'valid')]
# manually optimised, initially from kaggle
params_m = {'min_child_weight': 28, 'eta': 0.17, 'colsample_bytree': 0.54, 'max_depth': 16,
'subsample': 0.95, 'lambda': 1, 'nthread': 8, 'booster' : 'gbtree', 'silent': 1,
'eval_metric': 'rmse', 'objective': 'reg:linear'}
# from scikit-optimize [133, 0.17936020611338641, 0.70459161599199072, 64, 1.0, 24.2701922969149, 0]
params_s = {'min_child_weight': 133, 'eta': 0.17936, 'colsample_bytree': 0.70459, 'max_depth': 64,
'subsample': 1.0, 'lambda': 24.27, 'gamma': 0, 'nthread': 8, 'booster' : 'gbtree', 'silent': 1,
'eval_metric': 'rmse', 'objective': 'reg:linear'}
XGmodel = xgb.train(params=params_s, dtrain=dtrain, num_boost_round=800, evals=watchlist, early_stopping_rounds=50,
maximize=False, verbose_eval=10)
XGtrain_preds = XGmodel.predict(dtrain)
XGvalid_preds = XGmodel.predict(dvalid)
print('\nTrain RMSE =', round(np.sqrt(mean_squared_error(ytrain, XGtrain_preds)),6))
print('Validn RMSE =', round(np.sqrt(mean_squared_error(yvalid, XGvalid_preds)),6))
[0] train-rmse:4.93095 valid-rmse:4.94847 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.777307 valid-rmse:0.808111 [20] train-rmse:0.338761 valid-rmse:0.395887 [30] train-rmse:0.297289 valid-rmse:0.37005 [40] train-rmse:0.278907 valid-rmse:0.36514 [50] train-rmse:0.265811 valid-rmse:0.363451 [60] train-rmse:0.259875 valid-rmse:0.363167 [70] train-rmse:0.256904 valid-rmse:0.363079 [80] train-rmse:0.254767 valid-rmse:0.363147 [90] train-rmse:0.25158 valid-rmse:0.363215 [100] train-rmse:0.247844 valid-rmse:0.36303 [110] train-rmse:0.245152 valid-rmse:0.363089 [120] train-rmse:0.243569 valid-rmse:0.363155 [130] train-rmse:0.240284 valid-rmse:0.362881 [140] train-rmse:0.238333 valid-rmse:0.36295 [150] train-rmse:0.237087 valid-rmse:0.36314 [160] train-rmse:0.235969 valid-rmse:0.363181 [170] train-rmse:0.23457 valid-rmse:0.363267 [180] train-rmse:0.232045 valid-rmse:0.363283 Stopping. Best iteration: [132] train-rmse:0.239957 valid-rmse:0.362816 Train RMSE = 0.231848 Validn RMSE = 0.363328 CPU times: user 2h 19min 21s, sys: 23.5 s, total: 2h 19min 44s Wall time: 21min 21s
In [152]:
feature_importance = pd.Series(index = Xtrain.columns, data = XGmodel.get_fscore())
_ = feature_importance.sort_values(ascending=True).head(40).plot(kind='barh', color="r", figsize = (18,12))
In [153]:
dtest = xgb.DMatrix(Xtest)
XGlog_test_preds = XGmodel.predict(dtest)
XGtest_preds = np.exp(XGlog_test_preds) - 1
XGpreds = pd.DataFrame({'id': test_id, 'trip_duration': XGtest_preds})
XGpreds.to_csv('XG_submission.csv.gz', index=False, compression='gzip')
XGBoost model hyperparameter search - scikit optimise¶
In [141]:
# create a cut down training set to reduce training time
sample_size = 200000
print('Total training size',len(Xtrain))
print('Train sample size =', sample_size)
train_samples = np.random.choice(Xtrain.index, size=sample_size)
Xtrain_small = Xtrain.loc[train_samples]
ytrain_small = ytrain.loc[train_samples]
Total training size 1305276 Train sample size = 200000
In [146]:
from skopt import gp_minimize
from sklearn.metrics import mean_squared_error
import xgboost as xgb
def objective(values):
params = {'min_child_weight': values[0],
'eta': values[1],
'colsample_bytree': values[2],
'max_depth': values[3],
'subsample': values[4],
'lambda': values[5],
'gamma': values[6],
'nthread': 8, 'booster' : 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'}
print('\nNext set of params.....',params)
XGmodel = xgb.train(params=params, dtrain=dtrain_opt, num_boost_round=40, evals=watchlist, early_stopping_rounds=50,
maximize=False, verbose_eval=10)
XGvalid_preds = XGmodel.predict(dvalid)
return np.sqrt(mean_squared_error(yvalid, XGvalid_preds))
In [147]:
%%time
# Bayesian optimisation using Gaussian processes- calls objective function n_calls times
space = [(10, 300), # min_child_weight
(0.1, 0.3), # eta
(0.4, 1), # colsample_bytree
(5, 300), # max_depth
(0.8, 1), # subsample
(0.1, 90), # lambda
(0, 2), # gamma
]
dtrain_opt = xgb.DMatrix(Xtrain_small, label=ytrain_small) # use cutdown training set
result = gp_minimize(objective, space, n_calls=800, random_state=0, verbose=True)
Iteration No: 1 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 169, 'eta': 0.24303787327448392, 'colsample_bytree': 0.76165802564298635, 'max_depth': 111, 'subsample': 0.88473095986778094, 'lambda': 58.165880764692403, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55617 valid-rmse:4.57455 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.479773 valid-rmse:0.51989 [20] train-rmse:0.348796 valid-rmse:0.394411 [30] train-rmse:0.338764 valid-rmse:0.385468 [39] train-rmse:0.334927 valid-rmse:0.382512 Iteration No: 1 ended. Evaluation done at random point. Time taken: 11.1970 Function value obtained: 0.3825 Current minimum: 0.3825 Iteration No: 2 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 269, 'eta': 0.29273255210020588, 'colsample_bytree': 0.63006491129546671, 'max_depth': 159, 'subsample': 0.90577898395058098, 'lambda': 51.167206042344532, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.26079 valid-rmse:4.27933 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.400194 valid-rmse:0.443665 [20] train-rmse:0.349518 valid-rmse:0.394501 [30] train-rmse:0.342579 valid-rmse:0.388407 [39] train-rmse:0.339853 valid-rmse:0.386219 Iteration No: 2 ended. Evaluation done at random point. Time taken: 9.6680 Function value obtained: 0.3862 Current minimum: 0.3825 Iteration No: 3 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 31, 'eta': 0.11742585994030814, 'colsample_bytree': 0.41213103846419546, 'max_depth': 167, 'subsample': 0.95563135018997014, 'lambda': 78.31409212738906, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.30247 valid-rmse:5.32061 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.58718 valid-rmse:1.61017 [20] train-rmse:0.596603 valid-rmse:0.63298 [30] train-rmse:0.390949 valid-rmse:0.436297 [39] train-rmse:0.357104 valid-rmse:0.403759 Iteration No: 3 ended. Evaluation done at random point. Time taken: 5.3762 Function value obtained: 0.4038 Current minimum: 0.3825 Iteration No: 4 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 242, 'eta': 0.19229587245058638, 'colsample_bytree': 0.86831750577187339, 'max_depth': 28, 'subsample': 0.92798420426550476, 'lambda': 12.987460538073275, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85519 valid-rmse:4.8732 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.692715 valid-rmse:0.72533 [20] train-rmse:0.359073 valid-rmse:0.405093 [30] train-rmse:0.342846 valid-rmse:0.389398 [39] train-rmse:0.339174 valid-rmse:0.386057 Iteration No: 4 ended. Evaluation done at random point. Time taken: 11.4492 Function value obtained: 0.3861 Current minimum: 0.3825 Iteration No: 5 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 161, 'eta': 0.18293238799810474, 'colsample_bytree': 0.55873336726277623, 'max_depth': 156, 'subsample': 0.89123006644330971, 'lambda': 51.202212003291514, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9127 valid-rmse:4.93101 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.77104 valid-rmse:0.802081 [20] train-rmse:0.370792 valid-rmse:0.416144 [30] train-rmse:0.341847 valid-rmse:0.388952 [39] train-rmse:0.334905 valid-rmse:0.383101 Iteration No: 5 ended. Evaluation done at random point. Time taken: 7.6782 Function value obtained: 0.3831 Current minimum: 0.3825 Iteration No: 6 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 189, 'eta': 0.2224191445444843, 'colsample_bytree': 0.77016039812485415, 'max_depth': 189, 'subsample': 0.9363640598206967, 'lambda': 32.41976026158337, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.6772 valid-rmse:4.69527 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.541295 valid-rmse:0.578947 [20] train-rmse:0.34939 valid-rmse:0.396156 [30] train-rmse:0.338428 valid-rmse:0.386092 [39] train-rmse:0.334554 valid-rmse:0.382972 Iteration No: 6 ended. Evaluation done at random point. Time taken: 11.0722 Function value obtained: 0.3830 Current minimum: 0.3825 Iteration No: 7 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 212, 'eta': 0.11204509432585397, 'colsample_bytree': 0.80006002926740072, 'max_depth': 136, 'subsample': 0.8420765122147682, 'lambda': 11.690474159171314, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.33288 valid-rmse:5.35085 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.67492 valid-rmse:1.69622 [20] train-rmse:0.625849 valid-rmse:0.660202 [30] train-rmse:0.389057 valid-rmse:0.433833 [39] train-rmse:0.350875 valid-rmse:0.397428 Iteration No: 7 ended. Evaluation done at random point. Time taken: 8.0236 Function value obtained: 0.3974 Current minimum: 0.3825 Iteration No: 8 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 115, 'eta': 0.21403935408357594, 'colsample_bytree': 0.66316090807739236, 'max_depth': 198, 'subsample': 0.82040896214960568, 'lambda': 18.878020372925647, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.72629 valid-rmse:4.7443 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.573582 valid-rmse:0.609933 [20] train-rmse:0.347113 valid-rmse:0.394668 [30] train-rmse:0.334109 valid-rmse:0.383965 [39] train-rmse:0.32971 valid-rmse:0.381353 Iteration No: 8 ended. Evaluation done at random point. Time taken: 11.9743 Function value obtained: 0.3814 Current minimum: 0.3814 Iteration No: 9 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 199, 'eta': 0.15065832050795644, 'colsample_bytree': 0.67978646371378382, 'max_depth': 53, 'subsample': 0.83179391672910397, 'lambda': 10.022725190671034, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.10283 valid-rmse:5.12075 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.0737 valid-rmse:1.09939 [20] train-rmse:0.411689 valid-rmse:0.45513 [30] train-rmse:0.347344 valid-rmse:0.393912 [39] train-rmse:0.339156 valid-rmse:0.38629 Iteration No: 9 ended. Evaluation done at random point. Time taken: 8.8471 Function value obtained: 0.3863 Current minimum: 0.3814 Iteration No: 10 started. Evaluating function at random point. Next set of params..... {'min_child_weight': 50, 'eta': 0.13931647233601072, 'colsample_bytree': 0.62123510239657853, 'max_depth': 165, 'subsample': 0.81942025515861228, 'lambda': 75.431247184142492, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.17256 valid-rmse:5.19074 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.23374 valid-rmse:1.25914 [20] train-rmse:0.463937 valid-rmse:0.506017 [30] train-rmse:0.358759 valid-rmse:0.406712 [39] train-rmse:0.341001 valid-rmse:0.390742 Iteration No: 10 ended. Evaluation done at random point. Time taken: 7.7456 Function value obtained: 0.3907 Current minimum: 0.3814 Iteration No: 11 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 5, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21192 valid-rmse:4.22956 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.404346 valid-rmse:0.446388 [20] train-rmse:0.368841 valid-rmse:0.411431 [30] train-rmse:0.360016 valid-rmse:0.40309 [39] train-rmse:0.35581 valid-rmse:0.399475 Iteration No: 11 ended. Search finished for the next optimal point. Time taken: 3.9856 Function value obtained: 0.3995 Current minimum: 0.3814 Iteration No: 12 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.23721093674286556, 'colsample_bytree': 0.40000000000000002, 'max_depth': 5, 'subsample': 0.80000000000000004, 'lambda': 90.0, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59213 valid-rmse:4.61051 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.515291 valid-rmse:0.554142 [20] train-rmse:0.383146 valid-rmse:0.425983 [30] train-rmse:0.369024 valid-rmse:0.412429 [39] train-rmse:0.363543 valid-rmse:0.407431 Iteration No: 12 ended. Search finished for the next optimal point. Time taken: 2.7372 Function value obtained: 0.4074 Current minimum: 0.3814 Iteration No: 13 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 5, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21247 valid-rmse:4.22993 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.406212 valid-rmse:0.448665 [20] train-rmse:0.368158 valid-rmse:0.411716 [30] train-rmse:0.358239 valid-rmse:0.402627 [39] train-rmse:0.354405 valid-rmse:0.399382 Iteration No: 13 ended. Search finished for the next optimal point. Time taken: 2.6971 Function value obtained: 0.3994 Current minimum: 0.3814 Iteration No: 14 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.23133212970566921, 'colsample_bytree': 1.0, 'max_depth': 5, 'subsample': 0.80000000000000004, 'lambda': 37.479895837702138, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62438 valid-rmse:4.64264 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.520047 valid-rmse:0.55872 [20] train-rmse:0.373373 valid-rmse:0.417238 [30] train-rmse:0.362264 valid-rmse:0.406493 [39] train-rmse:0.357876 valid-rmse:0.402456 Iteration No: 14 ended. Search finished for the next optimal point. Time taken: 4.0327 Function value obtained: 0.4025 Current minimum: 0.3814 Iteration No: 15 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21026 valid-rmse:4.22769 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.373293 valid-rmse:0.419267 [20] train-rmse:0.34279 valid-rmse:0.390797 [30] train-rmse:0.338555 valid-rmse:0.387663 [39] train-rmse:0.336548 valid-rmse:0.386314 Iteration No: 15 ended. Search finished for the next optimal point. Time taken: 20.0753 Function value obtained: 0.3863 Current minimum: 0.3814 Iteration No: 16 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21001 valid-rmse:4.22741 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.371219 valid-rmse:0.416678 [20] train-rmse:0.341954 valid-rmse:0.388446 [30] train-rmse:0.338909 valid-rmse:0.386091 [39] train-rmse:0.337319 valid-rmse:0.385005 Iteration No: 16 ended. Search finished for the next optimal point. Time taken: 19.0071 Function value obtained: 0.3850 Current minimum: 0.3814 Iteration No: 17 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.22499701007990208, 'colsample_bytree': 0.40000000000000002, 'max_depth': 121, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.65791 valid-rmse:4.67531 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.515946 valid-rmse:0.554045 [20] train-rmse:0.348652 valid-rmse:0.395366 [30] train-rmse:0.338966 valid-rmse:0.387034 [39] train-rmse:0.335082 valid-rmse:0.384551 Iteration No: 17 ended. Search finished for the next optimal point. Time taken: 8.6739 Function value obtained: 0.3846 Current minimum: 0.3814 Iteration No: 18 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.10000000000000001, 'colsample_bytree': 1.0, 'max_depth': 5, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.40381 valid-rmse:5.42164 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.92421 valid-rmse:1.94432 [20] train-rmse:0.766814 valid-rmse:0.797398 [30] train-rmse:0.447721 valid-rmse:0.489138 [39] train-rmse:0.386 valid-rmse:0.429772 Iteration No: 18 ended. Search finished for the next optimal point. Time taken: 4.1829 Function value obtained: 0.4298 Current minimum: 0.3814 Iteration No: 19 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.23154623784238476, 'colsample_bytree': 0.66670960618433694, 'max_depth': 200, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.6191 valid-rmse:4.63648 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.488718 valid-rmse:0.527462 [20] train-rmse:0.346882 valid-rmse:0.392448 [30] train-rmse:0.341343 valid-rmse:0.386948 [39] train-rmse:0.339132 valid-rmse:0.385262 Iteration No: 19 ended. Search finished for the next optimal point. Time taken: 10.8692 Function value obtained: 0.3853 Current minimum: 0.3814 Iteration No: 20 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.18325361434009563, 'colsample_bytree': 1.0, 'max_depth': 110, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90625 valid-rmse:4.92378 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.737612 valid-rmse:0.771185 [20] train-rmse:0.353413 valid-rmse:0.406764 [30] train-rmse:0.338472 valid-rmse:0.392655 [39] train-rmse:0.336196 valid-rmse:0.390659 Iteration No: 20 ended. Search finished for the next optimal point. Time taken: 29.6053 Function value obtained: 0.3907 Current minimum: 0.3814 Iteration No: 21 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 62, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.20997 valid-rmse:4.22739 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.364641 valid-rmse:0.426523 [20] train-rmse:0.34316 valid-rmse:0.409065 [30] train-rmse:0.343407 valid-rmse:0.409713 [39] train-rmse:0.343428 valid-rmse:0.410071 Iteration No: 21 ended. Search finished for the next optimal point. Time taken: 37.9904 Function value obtained: 0.4101 Current minimum: 0.3814 Iteration No: 22 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.24753339754702527, 'colsample_bytree': 0.40000000000000002, 'max_depth': 200, 'subsample': 0.90906273721226816, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.52461 valid-rmse:4.54249 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.436959 valid-rmse:0.49261 [20] train-rmse:0.338919 valid-rmse:0.40647 [30] train-rmse:0.336974 valid-rmse:0.40552 [39] train-rmse:0.336732 valid-rmse:0.405663 Iteration No: 22 ended. Search finished for the next optimal point. Time taken: 26.7029 Function value obtained: 0.4057 Current minimum: 0.3814 Iteration No: 23 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.10000000000000001, 'colsample_bytree': 0.40000000000000002, 'max_depth': 200, 'subsample': 0.80000000000000004, 'lambda': 90.0, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.40637 valid-rmse:5.4245 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.9426 valid-rmse:1.96405 [20] train-rmse:0.786213 valid-rmse:0.817354 [30] train-rmse:0.457438 valid-rmse:0.498734 [39] train-rmse:0.384942 valid-rmse:0.429203 Iteration No: 23 ended. Search finished for the next optimal point. Time taken: 3.8833 Function value obtained: 0.4292 Current minimum: 0.3814 Iteration No: 24 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 158, 'eta': 0.20409393433866146, 'colsample_bytree': 0.40000000000000002, 'max_depth': 107, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.78247 valid-rmse:4.79998 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.609571 valid-rmse:0.644382 [20] train-rmse:0.352485 valid-rmse:0.399348 [30] train-rmse:0.341536 valid-rmse:0.388673 [39] train-rmse:0.338269 valid-rmse:0.386016 Iteration No: 24 ended. Search finished for the next optimal point. Time taken: 8.7659 Function value obtained: 0.3860 Current minimum: 0.3814 Iteration No: 25 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.16895176986632049, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99171 valid-rmse:5.0093 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.860191 valid-rmse:0.888521 [20] train-rmse:0.36272 valid-rmse:0.411302 [30] train-rmse:0.334521 valid-rmse:0.385635 [39] train-rmse:0.330648 valid-rmse:0.382925 Iteration No: 25 ended. Search finished for the next optimal point. Time taken: 20.1940 Function value obtained: 0.3829 Current minimum: 0.3814 Iteration No: 26 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 188, 'eta': 0.21259336366248757, 'colsample_bytree': 0.40000000000000002, 'max_depth': 123, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73266 valid-rmse:4.75049 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.565852 valid-rmse:0.602319 [20] train-rmse:0.347876 valid-rmse:0.395265 [30] train-rmse:0.337482 valid-rmse:0.386153 [39] train-rmse:0.334002 valid-rmse:0.384063 Iteration No: 26 ended. Search finished for the next optimal point. Time taken: 9.3197 Function value obtained: 0.3841 Current minimum: 0.3814 Iteration No: 27 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 174, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21907 valid-rmse:4.23748 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.401812 valid-rmse:0.445782 [20] train-rmse:0.347978 valid-rmse:0.394724 [30] train-rmse:0.336633 valid-rmse:0.385703 [39] train-rmse:0.332053 valid-rmse:0.382878 Iteration No: 27 ended. Search finished for the next optimal point. Time taken: 7.6011 Function value obtained: 0.3829 Current minimum: 0.3814 Iteration No: 28 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 84, 'eta': 0.20474918011832055, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.78378 valid-rmse:4.80194 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.631539 valid-rmse:0.666909 [20] train-rmse:0.359221 valid-rmse:0.40602 [30] train-rmse:0.343916 valid-rmse:0.391263 [39] train-rmse:0.338953 valid-rmse:0.386973 Iteration No: 28 ended. Search finished for the next optimal point. Time taken: 13.9339 Function value obtained: 0.3870 Current minimum: 0.3814 Iteration No: 29 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 208, 'eta': 0.27784115909013568, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.34214 valid-rmse:4.35954 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.385637 valid-rmse:0.431289 [20] train-rmse:0.336602 valid-rmse:0.385869 [30] train-rmse:0.332879 valid-rmse:0.384038 [39] train-rmse:0.330858 valid-rmse:0.383379 Iteration No: 29 ended. Search finished for the next optimal point. Time taken: 31.3260 Function value obtained: 0.3834 Current minimum: 0.3814 Iteration No: 30 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.29999999999999999, 'colsample_bytree': 0.45816822266155877, 'max_depth': 5, 'subsample': 0.81555513179531214, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21996 valid-rmse:4.23851 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.417219 valid-rmse:0.459257 [20] train-rmse:0.375422 valid-rmse:0.417948 [30] train-rmse:0.364118 valid-rmse:0.407103 [39] train-rmse:0.358552 valid-rmse:0.401991 Iteration No: 30 ended. Search finished for the next optimal point. Time taken: 2.7177 Function value obtained: 0.4020 Current minimum: 0.3814 Iteration No: 31 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 248, 'eta': 0.24310915105599318, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55617 valid-rmse:4.57441 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.484145 valid-rmse:0.524432 [20] train-rmse:0.349382 valid-rmse:0.395862 [30] train-rmse:0.337649 valid-rmse:0.385559 [39] train-rmse:0.333203 valid-rmse:0.382191 Iteration No: 31 ended. Search finished for the next optimal point. Time taken: 14.9248 Function value obtained: 0.3822 Current minimum: 0.3814 Iteration No: 32 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 287, 'eta': 0.11660164640936438, 'colsample_bytree': 0.83686856600285386, 'max_depth': 7, 'subsample': 0.99080423485662239, 'lambda': 60.180346764679733, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.30706 valid-rmse:5.3252 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.59646 valid-rmse:1.61909 [20] train-rmse:0.599191 valid-rmse:0.634778 [30] train-rmse:0.398074 valid-rmse:0.441725 [39] train-rmse:0.368216 valid-rmse:0.412649 Iteration No: 32 ended. Search finished for the next optimal point. Time taken: 4.7587 Function value obtained: 0.4126 Current minimum: 0.3814 Iteration No: 33 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.18279742852746411, 'colsample_bytree': 1.0, 'max_depth': 136, 'subsample': 0.80000000000000004, 'lambda': 90.0, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91459 valid-rmse:4.93274 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.777932 valid-rmse:0.80919 [20] train-rmse:0.376792 valid-rmse:0.421943 [30] train-rmse:0.348937 valid-rmse:0.394792 [39] train-rmse:0.343305 valid-rmse:0.389489 Iteration No: 33 ended. Search finished for the next optimal point. Time taken: 11.5275 Function value obtained: 0.3895 Current minimum: 0.3814 Iteration No: 34 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395799 valid-rmse:0.440293 [20] train-rmse:0.344577 valid-rmse:0.391066 [30] train-rmse:0.336463 valid-rmse:0.384766 [39] train-rmse:0.333151 valid-rmse:0.382692 Iteration No: 34 ended. Search finished for the next optimal point. Time taken: 16.4786 Function value obtained: 0.3827 Current minimum: 0.3814 Iteration No: 35 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.18180143057300549, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91495 valid-rmse:4.9325 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.751319 valid-rmse:0.781658 [20] train-rmse:0.355179 valid-rmse:0.402365 [30] train-rmse:0.336882 valid-rmse:0.385122 [39] train-rmse:0.33314 valid-rmse:0.382267 Iteration No: 35 ended. Search finished for the next optimal point. Time taken: 17.5337 Function value obtained: 0.3823 Current minimum: 0.3814 Iteration No: 36 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 47, 'eta': 0.15481691906904671, 'colsample_bytree': 0.4412185496472274, 'max_depth': 198, 'subsample': 0.97755342427047376, 'lambda': 4.0591662635941921, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.07749 valid-rmse:5.09526 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.02066 valid-rmse:1.04732 [20] train-rmse:0.392034 valid-rmse:0.440242 [30] train-rmse:0.332789 valid-rmse:0.387297 [39] train-rmse:0.324994 valid-rmse:0.381763 Iteration No: 36 ended. Search finished for the next optimal point. Time taken: 10.6266 Function value obtained: 0.3818 Current minimum: 0.3814 Iteration No: 37 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.1703771151528988, 'colsample_bytree': 0.40000000000000002, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98357 valid-rmse:5.00114 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.853304 valid-rmse:0.881561 [20] train-rmse:0.368185 valid-rmse:0.415122 [30] train-rmse:0.33852 valid-rmse:0.387662 [39] train-rmse:0.333152 valid-rmse:0.38377 Iteration No: 37 ended. Search finished for the next optimal point. Time taken: 8.4952 Function value obtained: 0.3838 Current minimum: 0.3814 Iteration No: 38 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.17008785493892481, 'colsample_bytree': 1.0, 'max_depth': 90, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98501 valid-rmse:5.00261 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.853567 valid-rmse:0.881691 [20] train-rmse:0.367653 valid-rmse:0.413756 [30] train-rmse:0.340009 valid-rmse:0.387383 [39] train-rmse:0.335942 valid-rmse:0.38381 Iteration No: 38 ended. Search finished for the next optimal point. Time taken: 15.3415 Function value obtained: 0.3838 Current minimum: 0.3814 Iteration No: 39 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 40, 'eta': 0.29604858879023416, 'colsample_bytree': 0.54031732707977109, 'max_depth': 190, 'subsample': 0.96193937534687646, 'lambda': 89.764059784632977, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2428 valid-rmse:4.26131 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.39705 valid-rmse:0.441831 [20] train-rmse:0.343366 valid-rmse:0.391254 [30] train-rmse:0.336036 valid-rmse:0.385297 [39] train-rmse:0.332672 valid-rmse:0.382987 Iteration No: 39 ended. Search finished for the next optimal point. Time taken: 11.3680 Function value obtained: 0.3830 Current minimum: 0.3814 Iteration No: 40 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.23865650111573139, 'colsample_bytree': 0.91879870638490879, 'max_depth': 197, 'subsample': 0.82488107270916677, 'lambda': 88.513421821220064, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58298 valid-rmse:4.60121 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.495166 valid-rmse:0.53583 [20] train-rmse:0.349209 valid-rmse:0.397375 [30] train-rmse:0.3376 valid-rmse:0.386874 [39] train-rmse:0.333818 valid-rmse:0.384335 Iteration No: 40 ended. Search finished for the next optimal point. Time taken: 18.0331 Function value obtained: 0.3843 Current minimum: 0.3814 Iteration No: 41 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 199, 'eta': 0.25794482641680794, 'colsample_bytree': 0.42167304327872585, 'max_depth': 197, 'subsample': 0.89068476094339843, 'lambda': 88.214861526529546, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4688 valid-rmse:4.48722 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.456537 valid-rmse:0.497864 [20] train-rmse:0.353749 valid-rmse:0.399144 [30] train-rmse:0.341311 valid-rmse:0.388014 [39] train-rmse:0.337349 valid-rmse:0.384695 Iteration No: 41 ended. Search finished for the next optimal point. Time taken: 7.2840 Function value obtained: 0.3847 Current minimum: 0.3814 Iteration No: 42 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24126683092459558, 'colsample_bytree': 0.66485987860236584, 'max_depth': 200, 'subsample': 0.90027288784048143, 'lambda': 40.540338535825818, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.5658 valid-rmse:4.58423 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.484825 valid-rmse:0.524733 [20] train-rmse:0.350307 valid-rmse:0.396103 [30] train-rmse:0.339085 valid-rmse:0.385944 [39] train-rmse:0.334951 valid-rmse:0.382948 Iteration No: 42 ended. Search finished for the next optimal point. Time taken: 10.5851 Function value obtained: 0.3829 Current minimum: 0.3814 Iteration No: 43 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.17762692318226966, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 54.646343302832477, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94381 valid-rmse:4.96199 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.810073 valid-rmse:0.840906 [20] train-rmse:0.369348 valid-rmse:0.419143 [30] train-rmse:0.332936 valid-rmse:0.388355 [39] train-rmse:0.324468 valid-rmse:0.383342 Iteration No: 43 ended. Search finished for the next optimal point. Time taken: 20.3690 Function value obtained: 0.3833 Current minimum: 0.3814 Iteration No: 44 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 27, 'eta': 0.18856767948620573, 'colsample_bytree': 0.69955801483323976, 'max_depth': 78, 'subsample': 0.97734566564588943, 'lambda': 89.217808298118527, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88015 valid-rmse:4.89837 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.732668 valid-rmse:0.76528 [20] train-rmse:0.365803 valid-rmse:0.413739 [30] train-rmse:0.337029 valid-rmse:0.388279 [39] train-rmse:0.329008 valid-rmse:0.382931 Iteration No: 44 ended. Search finished for the next optimal point. Time taken: 11.9989 Function value obtained: 0.3829 Current minimum: 0.3814 Iteration No: 45 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 32, 'eta': 0.24393381675713957, 'colsample_bytree': 0.95181281983011456, 'max_depth': 150, 'subsample': 0.99506283394000994, 'lambda': 87.170995732307048, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55112 valid-rmse:4.56936 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.47783 valid-rmse:0.519207 [20] train-rmse:0.34257 valid-rmse:0.392918 [30] train-rmse:0.330466 valid-rmse:0.384296 [39] train-rmse:0.325686 valid-rmse:0.382388 Iteration No: 45 ended. Search finished for the next optimal point. Time taken: 19.3765 Function value obtained: 0.3824 Current minimum: 0.3814 Iteration No: 46 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 150, 'eta': 0.17720488474881657, 'colsample_bytree': 1.0, 'max_depth': 118, 'subsample': 1.0, 'lambda': 29.609280641033624, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94553 valid-rmse:4.96351 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.809227 valid-rmse:0.839162 [20] train-rmse:0.368657 valid-rmse:0.414581 [30] train-rmse:0.33779 valid-rmse:0.385994 [39] train-rmse:0.331763 valid-rmse:0.381487 Iteration No: 46 ended. Search finished for the next optimal point. Time taken: 14.4407 Function value obtained: 0.3815 Current minimum: 0.3814 Iteration No: 47 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 13, 'eta': 0.19618625185118505, 'colsample_bytree': 0.51971940812044026, 'max_depth': 199, 'subsample': 0.82184321331753885, 'lambda': 86.439553212493294, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.83523 valid-rmse:4.8535 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.684803 valid-rmse:0.718896 [20] train-rmse:0.363315 valid-rmse:0.411512 [30] train-rmse:0.336945 valid-rmse:0.388916 [39] train-rmse:0.329256 valid-rmse:0.384031 Iteration No: 47 ended. Search finished for the next optimal point. Time taken: 10.0455 Function value obtained: 0.3840 Current minimum: 0.3814 Iteration No: 48 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 20, 'eta': 0.29929125804448542, 'colsample_bytree': 0.41897377002758734, 'max_depth': 191, 'subsample': 0.84901161598401487, 'lambda': 87.961354328465603, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22388 valid-rmse:4.2424 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.398788 valid-rmse:0.443599 [20] train-rmse:0.346426 valid-rmse:0.393875 [30] train-rmse:0.337015 valid-rmse:0.386305 [39] train-rmse:0.333927 valid-rmse:0.384285 Iteration No: 48 ended. Search finished for the next optimal point. Time taken: 9.2657 Function value obtained: 0.3843 Current minimum: 0.3814 Iteration No: 49 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 286, 'eta': 0.15687664212743641, 'colsample_bytree': 0.4016055479222152, 'max_depth': 19, 'subsample': 0.88080698020360693, 'lambda': 0.49572692542835028, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.06501 valid-rmse:5.08286 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.99465 valid-rmse:1.02084 [20] train-rmse:0.393839 valid-rmse:0.438056 [30] train-rmse:0.345206 valid-rmse:0.391991 [39] train-rmse:0.338553 valid-rmse:0.385862 Iteration No: 49 ended. Search finished for the next optimal point. Time taken: 6.3262 Function value obtained: 0.3859 Current minimum: 0.3814 Iteration No: 50 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 35, 'eta': 0.10404879696874483, 'colsample_bytree': 0.74108161367469361, 'max_depth': 191, 'subsample': 0.96296418543551854, 'lambda': 0.48023613107988539, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.37948 valid-rmse:5.39726 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.82871 valid-rmse:1.84895 [20] train-rmse:0.692901 valid-rmse:0.726973 [30] train-rmse:0.38936 valid-rmse:0.440853 [39] train-rmse:0.335144 valid-rmse:0.39279 Iteration No: 50 ended. Search finished for the next optimal point. Time taken: 15.7581 Function value obtained: 0.3928 Current minimum: 0.3814 Iteration No: 51 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21877 valid-rmse:4.23712 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391082 valid-rmse:0.435457 [20] train-rmse:0.341855 valid-rmse:0.3894 [30] train-rmse:0.332896 valid-rmse:0.382806 [39] train-rmse:0.329519 valid-rmse:0.381509 Iteration No: 51 ended. Search finished for the next optimal point. Time taken: 18.8852 Function value obtained: 0.3815 Current minimum: 0.3814 Iteration No: 52 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 210, 'eta': 0.17881053296269786, 'colsample_bytree': 1.0, 'max_depth': 125, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93285 valid-rmse:4.95042 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.774484 valid-rmse:0.804488 [20] train-rmse:0.355289 valid-rmse:0.403531 [30] train-rmse:0.335523 valid-rmse:0.385324 [39] train-rmse:0.331948 valid-rmse:0.382781 Iteration No: 52 ended. Search finished for the next optimal point. Time taken: 19.8657 Function value obtained: 0.3828 Current minimum: 0.3814 Iteration No: 53 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 23, 'eta': 0.26216600835724779, 'colsample_bytree': 0.56932716062045308, 'max_depth': 101, 'subsample': 0.99273213619936129, 'lambda': 85.466471885916278, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44332 valid-rmse:4.46166 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.441342 valid-rmse:0.484055 [20] train-rmse:0.34063 valid-rmse:0.391219 [30] train-rmse:0.328919 valid-rmse:0.383918 [39] train-rmse:0.324223 valid-rmse:0.382331 Iteration No: 53 ended. Search finished for the next optimal point. Time taken: 12.8112 Function value obtained: 0.3823 Current minimum: 0.3814 Iteration No: 54 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.21510115778674543, 'colsample_bytree': 0.40000000000000002, 'max_depth': 132, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.7225 valid-rmse:4.74073 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.589144 valid-rmse:0.626251 [20] train-rmse:0.358742 valid-rmse:0.407784 [30] train-rmse:0.335843 valid-rmse:0.389621 [39] train-rmse:0.327587 valid-rmse:0.384562 Iteration No: 54 ended. Search finished for the next optimal point. Time taken: 9.2003 Function value obtained: 0.3846 Current minimum: 0.3814 Iteration No: 55 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 249, 'eta': 0.21589335421286832, 'colsample_bytree': 0.57800892725438868, 'max_depth': 12, 'subsample': 0.90634456430223731, 'lambda': 3.9526770769039543, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.71371 valid-rmse:4.73146 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.55713 valid-rmse:0.593641 [20] train-rmse:0.349224 valid-rmse:0.395484 [30] train-rmse:0.340942 valid-rmse:0.387503 [39] train-rmse:0.338948 valid-rmse:0.385878 Iteration No: 55 ended. Search finished for the next optimal point. Time taken: 5.7792 Function value obtained: 0.3859 Current minimum: 0.3814 Iteration No: 56 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 184, 'eta': 0.29731263143819886, 'colsample_bytree': 0.48390479303411926, 'max_depth': 200, 'subsample': 0.8344712596499918, 'lambda': 55.458606969383979, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23425 valid-rmse:4.25283 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395818 valid-rmse:0.439893 [20] train-rmse:0.343146 valid-rmse:0.39041 [30] train-rmse:0.334772 valid-rmse:0.383848 [39] train-rmse:0.331442 valid-rmse:0.381959 Iteration No: 56 ended. Search finished for the next optimal point. Time taken: 9.4511 Function value obtained: 0.3820 Current minimum: 0.3814 Iteration No: 57 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 126, 'eta': 0.2016059867973119, 'colsample_bytree': 0.40000000000000002, 'max_depth': 134, 'subsample': 1.0, 'lambda': 50.285462311945274, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80152 valid-rmse:4.81967 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.651359 valid-rmse:0.68578 [20] train-rmse:0.362259 valid-rmse:0.408836 [30] train-rmse:0.339377 valid-rmse:0.388025 [39] train-rmse:0.332465 valid-rmse:0.3828 Iteration No: 57 ended. Search finished for the next optimal point. Time taken: 7.3510 Function value obtained: 0.3828 Current minimum: 0.3814 Iteration No: 58 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 183, 'eta': 0.26235803323901863, 'colsample_bytree': 0.97701886085767975, 'max_depth': 140, 'subsample': 0.9432221898517541, 'lambda': 89.748762435588972, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44217 valid-rmse:4.46052 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.440077 valid-rmse:0.482529 [20] train-rmse:0.346279 valid-rmse:0.393132 [30] train-rmse:0.335876 valid-rmse:0.384604 [39] train-rmse:0.332022 valid-rmse:0.382126 Iteration No: 58 ended. Search finished for the next optimal point. Time taken: 15.4455 Function value obtained: 0.3821 Current minimum: 0.3814 Iteration No: 59 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 297, 'eta': 0.19666853588893546, 'colsample_bytree': 0.67291542468574861, 'max_depth': 92, 'subsample': 0.91362009405039879, 'lambda': 36.231244097209192, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.83057 valid-rmse:4.84889 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.674172 valid-rmse:0.707345 [20] train-rmse:0.361955 valid-rmse:0.407524 [30] train-rmse:0.342483 valid-rmse:0.388999 [39] train-rmse:0.336886 valid-rmse:0.384511 Iteration No: 59 ended. Search finished for the next optimal point. Time taken: 9.4615 Function value obtained: 0.3845 Current minimum: 0.3814 Iteration No: 60 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 131, 'eta': 0.26698876760386747, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4145 valid-rmse:4.43277 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.431084 valid-rmse:0.474002 [20] train-rmse:0.344238 valid-rmse:0.391979 [30] train-rmse:0.333811 valid-rmse:0.384069 [39] train-rmse:0.330078 valid-rmse:0.38232 Iteration No: 60 ended. Search finished for the next optimal point. Time taken: 18.0860 Function value obtained: 0.3823 Current minimum: 0.3814 Iteration No: 61 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.29504744187706733, 'colsample_bytree': 0.44400145130469498, 'max_depth': 199, 'subsample': 0.87996974372783798, 'lambda': 36.895104978420022, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.24632 valid-rmse:4.2648 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.396724 valid-rmse:0.440332 [20] train-rmse:0.345304 valid-rmse:0.391438 [30] train-rmse:0.33708 valid-rmse:0.38486 [39] train-rmse:0.333674 valid-rmse:0.382778 Iteration No: 61 ended. Search finished for the next optimal point. Time taken: 8.1992 Function value obtained: 0.3828 Current minimum: 0.3814 Iteration No: 62 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 235, 'eta': 0.18547606467502453, 'colsample_bytree': 1.0, 'max_depth': 116, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89304 valid-rmse:4.91056 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.722606 valid-rmse:0.754016 [20] train-rmse:0.351567 valid-rmse:0.399456 [30] train-rmse:0.335425 valid-rmse:0.384472 [39] train-rmse:0.332111 valid-rmse:0.382254 Iteration No: 62 ended. Search finished for the next optimal point. Time taken: 19.8366 Function value obtained: 0.3823 Current minimum: 0.3814 Iteration No: 63 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 36, 'eta': 0.29184360764414452, 'colsample_bytree': 0.54216995948555102, 'max_depth': 91, 'subsample': 0.93743729890147998, 'lambda': 89.870820429780338, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.26785 valid-rmse:4.28635 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.401505 valid-rmse:0.446092 [20] train-rmse:0.339093 valid-rmse:0.389441 [30] train-rmse:0.329756 valid-rmse:0.383764 [39] train-rmse:0.325757 valid-rmse:0.382478 Iteration No: 63 ended. Search finished for the next optimal point. Time taken: 12.3834 Function value obtained: 0.3825 Current minimum: 0.3814 Iteration No: 64 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.1504044360649002, 'colsample_bytree': 0.5660737349270758, 'max_depth': 173, 'subsample': 0.98989857217142285, 'lambda': 3.1616890991135489, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.10367 valid-rmse:5.12148 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.0711 valid-rmse:1.09659 [20] train-rmse:0.4064 valid-rmse:0.450344 [30] train-rmse:0.344513 valid-rmse:0.391665 [39] train-rmse:0.336835 valid-rmse:0.3846 Iteration No: 64 ended. Search finished for the next optimal point. Time taken: 8.4236 Function value obtained: 0.3846 Current minimum: 0.3814 Iteration No: 65 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 278, 'eta': 0.29933246182075712, 'colsample_bytree': 0.97936898654377624, 'max_depth': 129, 'subsample': 0.85821029339045096, 'lambda': 84.491972216940894, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22297 valid-rmse:4.24133 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.396288 valid-rmse:0.440385 [20] train-rmse:0.345707 valid-rmse:0.391472 [30] train-rmse:0.337484 valid-rmse:0.385154 [39] train-rmse:0.333619 valid-rmse:0.3825 Iteration No: 65 ended. Search finished for the next optimal point. Time taken: 15.3450 Function value obtained: 0.3825 Current minimum: 0.3814 Iteration No: 66 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.29857838701191275, 'colsample_bytree': 0.99531685929999381, 'max_depth': 131, 'subsample': 0.93331546953635092, 'lambda': 83.421203621980808, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2272 valid-rmse:4.24555 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391837 valid-rmse:0.437163 [20] train-rmse:0.345103 valid-rmse:0.392165 [30] train-rmse:0.338445 valid-rmse:0.386647 [39] train-rmse:0.336436 valid-rmse:0.385505 Iteration No: 66 ended. Search finished for the next optimal point. Time taken: 22.8526 Function value obtained: 0.3855 Current minimum: 0.3814 Iteration No: 67 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 298, 'eta': 0.29696609612006486, 'colsample_bytree': 0.6044176846620517, 'max_depth': 199, 'subsample': 0.9028066814551241, 'lambda': 88.825534402193142, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23758 valid-rmse:4.25611 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.400689 valid-rmse:0.444239 [20] train-rmse:0.348684 valid-rmse:0.394069 [30] train-rmse:0.340158 valid-rmse:0.386599 [39] train-rmse:0.336801 valid-rmse:0.383871 Iteration No: 67 ended. Search finished for the next optimal point. Time taken: 9.6636 Function value obtained: 0.3839 Current minimum: 0.3814 Iteration No: 68 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.2990473743419223, 'colsample_bytree': 0.49164556157268585, 'max_depth': 130, 'subsample': 0.92257839764351934, 'lambda': 89.897718315007779, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22518 valid-rmse:4.2437 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.399929 valid-rmse:0.443865 [20] train-rmse:0.348996 valid-rmse:0.394832 [30] train-rmse:0.341733 valid-rmse:0.388177 [39] train-rmse:0.338652 valid-rmse:0.385793 Iteration No: 68 ended. Search finished for the next optimal point. Time taken: 8.6339 Function value obtained: 0.3858 Current minimum: 0.3814 Iteration No: 69 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26864124468412676, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 42.108060898444357, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40265 valid-rmse:4.42101 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422956 valid-rmse:0.466249 [20] train-rmse:0.344161 valid-rmse:0.391073 [30] train-rmse:0.336025 valid-rmse:0.384441 [39] train-rmse:0.332571 valid-rmse:0.382348 Iteration No: 69 ended. Search finished for the next optimal point. Time taken: 17.5914 Function value obtained: 0.3823 Current minimum: 0.3814 Iteration No: 70 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.2857156103203472, 'colsample_bytree': 0.40426281460146696, 'max_depth': 145, 'subsample': 0.816308935918447, 'lambda': 2.7163740740626343, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.29844 valid-rmse:4.31626 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.39367 valid-rmse:0.43754 [20] train-rmse:0.345172 valid-rmse:0.391641 [30] train-rmse:0.33813 valid-rmse:0.386024 [39] train-rmse:0.335004 valid-rmse:0.384277 Iteration No: 70 ended. Search finished for the next optimal point. Time taken: 8.5360 Function value obtained: 0.3843 Current minimum: 0.3814 Iteration No: 71 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.19578837120085688, 'colsample_bytree': 0.6741231637158257, 'max_depth': 198, 'subsample': 0.98675801128944651, 'lambda': 47.358972644739559, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.83605 valid-rmse:4.85436 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.680812 valid-rmse:0.713769 [20] train-rmse:0.362841 valid-rmse:0.408275 [30] train-rmse:0.342165 valid-rmse:0.388832 [39] train-rmse:0.336103 valid-rmse:0.38394 Iteration No: 71 ended. Search finished for the next optimal point. Time taken: 9.5068 Function value obtained: 0.3839 Current minimum: 0.3814 Iteration No: 72 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 18, 'eta': 0.17395081280357227, 'colsample_bytree': 0.83537762306238217, 'max_depth': 29, 'subsample': 0.88246964753792301, 'lambda': 87.475442003962485, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96706 valid-rmse:4.98526 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.846819 valid-rmse:0.877248 [20] train-rmse:0.380545 valid-rmse:0.428092 [30] train-rmse:0.340282 valid-rmse:0.391703 [39] train-rmse:0.330581 valid-rmse:0.38449 Iteration No: 72 ended. Search finished for the next optimal point. Time taken: 13.2008 Function value obtained: 0.3845 Current minimum: 0.3814 Iteration No: 73 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.21389364920190232, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.72347 valid-rmse:4.74095 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.554389 valid-rmse:0.591096 [20] train-rmse:0.343502 valid-rmse:0.391267 [30] train-rmse:0.335116 valid-rmse:0.383917 [39] train-rmse:0.332189 valid-rmse:0.382011 Iteration No: 73 ended. Search finished for the next optimal point. Time taken: 19.8637 Function value obtained: 0.3820 Current minimum: 0.3814 Iteration No: 74 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.17357299544570348, 'colsample_bytree': 0.52794084126148122, 'max_depth': 118, 'subsample': 0.86049536779691693, 'lambda': 55.583235155824688, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96852 valid-rmse:4.98675 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.848121 valid-rmse:0.878268 [20] train-rmse:0.37932 valid-rmse:0.426982 [30] train-rmse:0.33762 valid-rmse:0.390327 [39] train-rmse:0.328111 valid-rmse:0.384021 Iteration No: 74 ended. Search finished for the next optimal point. Time taken: 10.6521 Function value obtained: 0.3840 Current minimum: 0.3814 Iteration No: 75 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.15055162031428274, 'colsample_bytree': 0.67511740385121688, 'max_depth': 198, 'subsample': 0.85867461617702212, 'lambda': 5.1189346493396659, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.10292 valid-rmse:5.12078 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.07047 valid-rmse:1.09658 [20] train-rmse:0.402739 valid-rmse:0.453081 [30] train-rmse:0.33166 valid-rmse:0.392523 [39] train-rmse:0.32218 valid-rmse:0.386759 Iteration No: 75 ended. Search finished for the next optimal point. Time taken: 17.9492 Function value obtained: 0.3868 Current minimum: 0.3814 Iteration No: 76 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21877 valid-rmse:4.23712 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391152 valid-rmse:0.435488 [20] train-rmse:0.340743 valid-rmse:0.388193 [30] train-rmse:0.33315 valid-rmse:0.383335 [39] train-rmse:0.329752 valid-rmse:0.381751 Iteration No: 76 ended. Search finished for the next optimal point. Time taken: 19.6222 Function value obtained: 0.3818 Current minimum: 0.3814 Iteration No: 77 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 291, 'eta': 0.10022647608198934, 'colsample_bytree': 0.99162972506427249, 'max_depth': 176, 'subsample': 0.81481064568280337, 'lambda': 0.45639626645420861, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.40223 valid-rmse:5.42004 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.91378 valid-rmse:1.93353 [20] train-rmse:0.74733 valid-rmse:0.777925 [30] train-rmse:0.418178 valid-rmse:0.461392 [39] train-rmse:0.354868 valid-rmse:0.401713 Iteration No: 77 ended. Search finished for the next optimal point. Time taken: 11.8093 Function value obtained: 0.4017 Current minimum: 0.3814 Iteration No: 78 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.17174873755073253, 'colsample_bytree': 0.64882198339307573, 'max_depth': 50, 'subsample': 0.98057761049619985, 'lambda': 38.732985256484163, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97856 valid-rmse:4.99679 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.860472 valid-rmse:0.889873 [20] train-rmse:0.379155 valid-rmse:0.424692 [30] train-rmse:0.341582 valid-rmse:0.389446 [39] train-rmse:0.333655 valid-rmse:0.382688 Iteration No: 78 ended. Search finished for the next optimal point. Time taken: 9.1680 Function value obtained: 0.3827 Current minimum: 0.3814 Iteration No: 79 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.18599765763665849, 'colsample_bytree': 0.52282356042877143, 'max_depth': 13, 'subsample': 0.84917491770733866, 'lambda': 2.2208360711534105, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89151 valid-rmse:4.90928 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.729131 valid-rmse:0.760116 [20] train-rmse:0.360076 valid-rmse:0.405627 [30] train-rmse:0.342995 valid-rmse:0.38894 [39] train-rmse:0.340114 valid-rmse:0.386448 Iteration No: 79 ended. Search finished for the next optimal point. Time taken: 5.9140 Function value obtained: 0.3864 Current minimum: 0.3814 Iteration No: 80 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 21, 'eta': 0.22831975567868304, 'colsample_bytree': 0.99548044511003009, 'max_depth': 34, 'subsample': 0.95199544123175628, 'lambda': 87.592306510454549, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64394 valid-rmse:4.66214 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.526572 valid-rmse:0.565751 [20] train-rmse:0.346427 valid-rmse:0.396524 [30] train-rmse:0.33123 valid-rmse:0.385331 [39] train-rmse:0.32591 valid-rmse:0.382856 Iteration No: 80 ended. Search finished for the next optimal point. Time taken: 17.6706 Function value obtained: 0.3829 Current minimum: 0.3814 Iteration No: 81 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.19356565269031262, 'colsample_bytree': 1.0, 'max_depth': 121, 'subsample': 1.0, 'lambda': 41.459204986006981, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8487 valid-rmse:4.86691 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.69101 valid-rmse:0.72399 [20] train-rmse:0.358392 valid-rmse:0.405178 [30] train-rmse:0.336712 valid-rmse:0.385416 [39] train-rmse:0.330947 valid-rmse:0.38129 Iteration No: 81 ended. Search finished for the next optimal point. Time taken: 14.7959 Function value obtained: 0.3813 Current minimum: 0.3813 Iteration No: 82 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.21085364644626681, 'colsample_bytree': 1.0, 'max_depth': 109, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.74754 valid-rmse:4.76572 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.600275 valid-rmse:0.637031 [20] train-rmse:0.351034 valid-rmse:0.401918 [30] train-rmse:0.331119 valid-rmse:0.386195 [39] train-rmse:0.324422 valid-rmse:0.382888 Iteration No: 82 ended. Search finished for the next optimal point. Time taken: 20.6388 Function value obtained: 0.3829 Current minimum: 0.3813 Iteration No: 83 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.152676534046681, 'colsample_bytree': 0.41943174268612393, 'max_depth': 195, 'subsample': 0.95483258993287357, 'lambda': 2.085698182769617, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.09001 valid-rmse:5.10782 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.04513 valid-rmse:1.07103 [20] train-rmse:0.402973 valid-rmse:0.447163 [30] train-rmse:0.346527 valid-rmse:0.39339 [39] train-rmse:0.340323 valid-rmse:0.387345 Iteration No: 83 ended. Search finished for the next optimal point. Time taken: 7.4205 Function value obtained: 0.3873 Current minimum: 0.3813 Iteration No: 84 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.18420933461585606, 'colsample_bytree': 0.61269450839913042, 'max_depth': 15, 'subsample': 0.93239313598383244, 'lambda': 0.44476176068262718, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90155 valid-rmse:4.9192 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.733515 valid-rmse:0.764948 [20] train-rmse:0.351453 valid-rmse:0.399643 [30] train-rmse:0.336044 valid-rmse:0.384759 [39] train-rmse:0.334145 valid-rmse:0.383202 Iteration No: 84 ended. Search finished for the next optimal point. Time taken: 7.6892 Function value obtained: 0.3832 Current minimum: 0.3813 Iteration No: 85 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.29930263368860732, 'colsample_bytree': 0.46100766081010286, 'max_depth': 180, 'subsample': 0.85330530084725187, 'lambda': 88.451112565769876, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22379 valid-rmse:4.24231 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.398661 valid-rmse:0.444091 [20] train-rmse:0.339605 valid-rmse:0.390943 [30] train-rmse:0.328855 valid-rmse:0.384564 [39] train-rmse:0.324297 valid-rmse:0.382693 Iteration No: 85 ended. Search finished for the next optimal point. Time taken: 12.1537 Function value obtained: 0.3827 Current minimum: 0.3813 Iteration No: 86 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 209, 'eta': 0.17767644132533464, 'colsample_bytree': 0.40000000000000002, 'max_depth': 107, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94005 valid-rmse:4.9576 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.789054 valid-rmse:0.818648 [20] train-rmse:0.362371 valid-rmse:0.409202 [30] train-rmse:0.3385 valid-rmse:0.387033 [39] train-rmse:0.333416 valid-rmse:0.383303 Iteration No: 86 ended. Search finished for the next optimal point. Time taken: 8.4417 Function value obtained: 0.3833 Current minimum: 0.3813 Iteration No: 87 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 121, 'eta': 0.27231424083900346, 'colsample_bytree': 1.0, 'max_depth': 162, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38291 valid-rmse:4.4012 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.421964 valid-rmse:0.465627 [20] train-rmse:0.342477 valid-rmse:0.390852 [30] train-rmse:0.333075 valid-rmse:0.383775 [39] train-rmse:0.329581 valid-rmse:0.382348 Iteration No: 87 ended. Search finished for the next optimal point. Time taken: 18.1655 Function value obtained: 0.3823 Current minimum: 0.3813 Iteration No: 88 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26761107925645189, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.097085470738364, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40864 valid-rmse:4.42699 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.423298 valid-rmse:0.466021 [20] train-rmse:0.343773 valid-rmse:0.390178 [30] train-rmse:0.33541 valid-rmse:0.383601 [39] train-rmse:0.332223 valid-rmse:0.381679 Iteration No: 88 ended. Search finished for the next optimal point. Time taken: 16.3545 Function value obtained: 0.3817 Current minimum: 0.3813 Iteration No: 89 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.21864774538708331, 'colsample_bytree': 0.52792432789585531, 'max_depth': 96, 'subsample': 0.83048843229568081, 'lambda': 89.633847346908325, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.70204 valid-rmse:4.72037 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.570743 valid-rmse:0.607791 [20] train-rmse:0.357574 valid-rmse:0.40355 [30] train-rmse:0.340856 valid-rmse:0.388302 [39] train-rmse:0.334807 valid-rmse:0.383512 Iteration No: 89 ended. Search finished for the next optimal point. Time taken: 8.0283 Function value obtained: 0.3835 Current minimum: 0.3813 Iteration No: 90 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.19171539455638295, 'colsample_bytree': 1.0, 'max_depth': 101, 'subsample': 1.0, 'lambda': 42.005810230261204, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85972 valid-rmse:4.87792 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.703189 valid-rmse:0.735798 [20] train-rmse:0.359325 valid-rmse:0.405991 [30] train-rmse:0.33705 valid-rmse:0.385703 [39] train-rmse:0.330873 valid-rmse:0.381286 Iteration No: 90 ended. Search finished for the next optimal point. Time taken: 15.4342 Function value obtained: 0.3813 Current minimum: 0.3813 Iteration No: 91 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 164, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23714 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391264 valid-rmse:0.435692 [20] train-rmse:0.341903 valid-rmse:0.389277 [30] train-rmse:0.333828 valid-rmse:0.383694 [39] train-rmse:0.330335 valid-rmse:0.381856 Iteration No: 91 ended. Search finished for the next optimal point. Time taken: 18.6282 Function value obtained: 0.3819 Current minimum: 0.3813 Iteration No: 92 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 118, 'eta': 0.18698404202714425, 'colsample_bytree': 0.88215896324412801, 'max_depth': 15, 'subsample': 0.90221206166894063, 'lambda': 88.861577707392968, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8897 valid-rmse:4.90793 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.744856 valid-rmse:0.77669 [20] train-rmse:0.369216 valid-rmse:0.41526 [30] train-rmse:0.343075 valid-rmse:0.390397 [39] train-rmse:0.337591 valid-rmse:0.385568 Iteration No: 92 ended. Search finished for the next optimal point. Time taken: 8.6291 Function value obtained: 0.3856 Current minimum: 0.3813 Iteration No: 93 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 221, 'eta': 0.18185588490282287, 'colsample_bytree': 1.0, 'max_depth': 108, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91466 valid-rmse:4.93222 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.750207 valid-rmse:0.780923 [20] train-rmse:0.352979 valid-rmse:0.401161 [30] train-rmse:0.334892 valid-rmse:0.384543 [39] train-rmse:0.3316 valid-rmse:0.38238 Iteration No: 93 ended. Search finished for the next optimal point. Time taken: 19.4645 Function value obtained: 0.3824 Current minimum: 0.3813 Iteration No: 94 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 166, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23714 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391471 valid-rmse:0.43617 [20] train-rmse:0.341068 valid-rmse:0.389392 [30] train-rmse:0.332625 valid-rmse:0.383489 [39] train-rmse:0.329371 valid-rmse:0.382298 Iteration No: 94 ended. Search finished for the next optimal point. Time taken: 19.4176 Function value obtained: 0.3823 Current minimum: 0.3813 Iteration No: 95 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 288, 'eta': 0.20966848548151137, 'colsample_bytree': 0.42192980030379534, 'max_depth': 186, 'subsample': 0.85687861402830334, 'lambda': 89.873295899564908, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.75522 valid-rmse:4.77352 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.614916 valid-rmse:0.650519 [20] train-rmse:0.366704 valid-rmse:0.411815 [30] train-rmse:0.345883 valid-rmse:0.392193 [39] train-rmse:0.339415 valid-rmse:0.386466 Iteration No: 95 ended. Search finished for the next optimal point. Time taken: 6.5316 Function value obtained: 0.3865 Current minimum: 0.3813 Iteration No: 96 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 115, 'eta': 0.24358946065857431, 'colsample_bytree': 0.40000000000000002, 'max_depth': 156, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55351 valid-rmse:4.57179 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.489796 valid-rmse:0.530428 [20] train-rmse:0.353516 valid-rmse:0.400506 [30] train-rmse:0.337792 valid-rmse:0.387134 [39] train-rmse:0.331756 valid-rmse:0.38296 Iteration No: 96 ended. Search finished for the next optimal point. Time taken: 7.5577 Function value obtained: 0.3830 Current minimum: 0.3813 Iteration No: 97 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 292, 'eta': 0.23754599076886854, 'colsample_bytree': 0.9522246252988652, 'max_depth': 103, 'subsample': 0.99351011218964769, 'lambda': 11.315887736342104, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58535 valid-rmse:4.60325 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.481069 valid-rmse:0.520975 [20] train-rmse:0.344381 valid-rmse:0.391395 [30] train-rmse:0.335621 valid-rmse:0.383755 [39] train-rmse:0.332345 valid-rmse:0.381539 Iteration No: 97 ended. Search finished for the next optimal point. Time taken: 16.2922 Function value obtained: 0.3815 Current minimum: 0.3813 Iteration No: 98 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 291, 'eta': 0.26034115468735514, 'colsample_bytree': 0.87237094146812999, 'max_depth': 199, 'subsample': 0.8093864453599674, 'lambda': 86.660667098724744, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45488 valid-rmse:4.47327 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.447959 valid-rmse:0.489755 [20] train-rmse:0.351268 valid-rmse:0.397061 [30] train-rmse:0.340187 valid-rmse:0.386722 [39] train-rmse:0.335597 valid-rmse:0.383277 Iteration No: 98 ended. Search finished for the next optimal point. Time taken: 11.7797 Function value obtained: 0.3833 Current minimum: 0.3813 Iteration No: 99 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 202, 'eta': 0.29803438405591132, 'colsample_bytree': 0.77725806223062732, 'max_depth': 130, 'subsample': 0.99862902245174467, 'lambda': 49.107777911354184, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22908 valid-rmse:4.24769 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.390636 valid-rmse:0.435299 [20] train-rmse:0.341338 valid-rmse:0.389256 [30] train-rmse:0.333443 valid-rmse:0.383683 [39] train-rmse:0.330227 valid-rmse:0.382129 Iteration No: 99 ended. Search finished for the next optimal point. Time taken: 15.4084 Function value obtained: 0.3821 Current minimum: 0.3813 Iteration No: 100 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 299, 'eta': 0.29967127819294681, 'colsample_bytree': 0.46884110096084203, 'max_depth': 199, 'subsample': 0.83534203409052288, 'lambda': 63.98370736981591, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22067 valid-rmse:4.23925 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.398764 valid-rmse:0.442538 [20] train-rmse:0.347525 valid-rmse:0.393265 [30] train-rmse:0.339041 valid-rmse:0.386276 [39] train-rmse:0.334955 valid-rmse:0.383461 Iteration No: 100 ended. Search finished for the next optimal point. Time taken: 8.7601 Function value obtained: 0.3835 Current minimum: 0.3813 Iteration No: 101 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.18441693119459596, 'colsample_bytree': 0.45133035796375282, 'max_depth': 12, 'subsample': 0.90418111368999055, 'lambda': 89.74074873195228, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90498 valid-rmse:4.92323 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.765389 valid-rmse:0.797507 [20] train-rmse:0.375664 valid-rmse:0.422235 [30] train-rmse:0.344983 valid-rmse:0.393638 [39] train-rmse:0.338489 valid-rmse:0.388022 Iteration No: 101 ended. Search finished for the next optimal point. Time taken: 5.6707 Function value obtained: 0.3880 Current minimum: 0.3813 Iteration No: 102 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.16527830611427022, 'colsample_bytree': 0.63059752327826202, 'max_depth': 197, 'subsample': 0.90137804676862188, 'lambda': 0.20679454941408232, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01611 valid-rmse:5.03392 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.900972 valid-rmse:0.928369 [20] train-rmse:0.374357 valid-rmse:0.419895 [30] train-rmse:0.34104 valid-rmse:0.388317 [39] train-rmse:0.336188 valid-rmse:0.384163 Iteration No: 102 ended. Search finished for the next optimal point. Time taken: 10.7622 Function value obtained: 0.3842 Current minimum: 0.3813 Iteration No: 103 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.19197181817236683, 'colsample_bytree': 0.86708069288674294, 'max_depth': 15, 'subsample': 0.95405964046893887, 'lambda': 3.7727726838508246, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85591 valid-rmse:4.87368 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.68524 valid-rmse:0.719672 [20] train-rmse:0.344749 valid-rmse:0.400061 [30] train-rmse:0.329599 valid-rmse:0.387566 [39] train-rmse:0.326946 valid-rmse:0.386126 Iteration No: 103 ended. Search finished for the next optimal point. Time taken: 10.6446 Function value obtained: 0.3861 Current minimum: 0.3813 Iteration No: 104 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.19830849691843577, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.81664 valid-rmse:4.83418 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.639292 valid-rmse:0.672433 [20] train-rmse:0.350237 valid-rmse:0.396898 [30] train-rmse:0.338479 valid-rmse:0.385783 [39] train-rmse:0.335639 valid-rmse:0.383685 Iteration No: 104 ended. Search finished for the next optimal point. Time taken: 16.6719 Function value obtained: 0.3837 Current minimum: 0.3813 Iteration No: 105 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 295, 'eta': 0.26404735515953115, 'colsample_bytree': 0.69792459359009884, 'max_depth': 120, 'subsample': 0.98777956155940017, 'lambda': 84.150241245019799, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43218 valid-rmse:4.45058 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.439257 valid-rmse:0.481286 [20] train-rmse:0.348515 valid-rmse:0.394433 [30] train-rmse:0.338284 valid-rmse:0.385497 [39] train-rmse:0.333968 valid-rmse:0.382419 Iteration No: 105 ended. Search finished for the next optimal point. Time taken: 11.0693 Function value obtained: 0.3824 Current minimum: 0.3813 Iteration No: 106 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 92, 'eta': 0.20055089218872041, 'colsample_bytree': 0.93979049576459328, 'max_depth': 9, 'subsample': 0.99895632332841955, 'lambda': 77.282855903537111, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8084 valid-rmse:4.82655 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.653919 valid-rmse:0.688346 [20] train-rmse:0.364285 valid-rmse:0.410387 [30] train-rmse:0.348593 valid-rmse:0.395064 [39] train-rmse:0.344017 valid-rmse:0.390913 Iteration No: 106 ended. Search finished for the next optimal point. Time taken: 6.7000 Function value obtained: 0.3909 Current minimum: 0.3813 Iteration No: 107 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 276, 'eta': 0.24781956088022833, 'colsample_bytree': 0.92709766552430972, 'max_depth': 77, 'subsample': 0.99749202632448886, 'lambda': 0.60111161768355958, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.5221 valid-rmse:4.53958 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.440188 valid-rmse:0.482009 [20] train-rmse:0.338418 valid-rmse:0.386417 [30] train-rmse:0.333388 valid-rmse:0.382771 [39] train-rmse:0.331217 valid-rmse:0.381959 Iteration No: 107 ended. Search finished for the next optimal point. Time taken: 20.2209 Function value obtained: 0.3820 Current minimum: 0.3813 Iteration No: 108 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.25557676364935644, 'colsample_bytree': 1.0, 'max_depth': 159, 'subsample': 1.0, 'lambda': 34.839203482049264, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.47991 valid-rmse:4.49824 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.444547 valid-rmse:0.486466 [20] train-rmse:0.344836 valid-rmse:0.391152 [30] train-rmse:0.33573 valid-rmse:0.383645 [39] train-rmse:0.332818 valid-rmse:0.381891 Iteration No: 108 ended. Search finished for the next optimal point. Time taken: 16.5979 Function value obtained: 0.3819 Current minimum: 0.3813 Iteration No: 109 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.27837423280981088, 'colsample_bytree': 0.40000000000000002, 'max_depth': 156, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.34724 valid-rmse:4.3656 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.4232 valid-rmse:0.466568 [20] train-rmse:0.349184 valid-rmse:0.39668 [30] train-rmse:0.336729 valid-rmse:0.386671 [39] train-rmse:0.33168 valid-rmse:0.383362 Iteration No: 109 ended. Search finished for the next optimal point. Time taken: 7.9050 Function value obtained: 0.3834 Current minimum: 0.3813 Iteration No: 110 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 299, 'eta': 0.19795230863170538, 'colsample_bytree': 0.91322675444078316, 'max_depth': 109, 'subsample': 0.95647374537969965, 'lambda': 89.172593308504247, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82422 valid-rmse:4.84238 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.672977 valid-rmse:0.706682 [20] train-rmse:0.364339 valid-rmse:0.410118 [30] train-rmse:0.34305 valid-rmse:0.389684 [39] train-rmse:0.336741 valid-rmse:0.384397 Iteration No: 110 ended. Search finished for the next optimal point. Time taken: 11.2407 Function value obtained: 0.3844 Current minimum: 0.3813 Iteration No: 111 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.15191727528788096, 'colsample_bytree': 0.47257719157501554, 'max_depth': 107, 'subsample': 0.9206643159014728, 'lambda': 3.6830409436095088, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.0948 valid-rmse:5.11257 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.05321 valid-rmse:1.07928 [20] train-rmse:0.396995 valid-rmse:0.446486 [30] train-rmse:0.329625 valid-rmse:0.38936 [39] train-rmse:0.320968 valid-rmse:0.384229 Iteration No: 111 ended. Search finished for the next optimal point. Time taken: 14.8120 Function value obtained: 0.3842 Current minimum: 0.3813 Iteration No: 112 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 17, 'eta': 0.15870407655941079, 'colsample_bytree': 0.7696956107806423, 'max_depth': 81, 'subsample': 0.97742820887029325, 'lambda': 88.325412061150487, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.05742 valid-rmse:5.0756 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.994669 valid-rmse:1.02265 [20] train-rmse:0.40411 valid-rmse:0.450227 [30] train-rmse:0.344629 valid-rmse:0.395644 [39] train-rmse:0.332632 valid-rmse:0.386158 Iteration No: 112 ended. Search finished for the next optimal point. Time taken: 12.5051 Function value obtained: 0.3862 Current minimum: 0.3813 Iteration No: 113 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24134782045426775, 'colsample_bytree': 1.0, 'max_depth': 153, 'subsample': 1.0, 'lambda': 36.074434609246559, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56451 valid-rmse:4.58281 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.479072 valid-rmse:0.519279 [20] train-rmse:0.34688 valid-rmse:0.393316 [30] train-rmse:0.337158 valid-rmse:0.384875 [39] train-rmse:0.332791 valid-rmse:0.381802 Iteration No: 113 ended. Search finished for the next optimal point. Time taken: 15.8792 Function value obtained: 0.3818 Current minimum: 0.3813 Iteration No: 114 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 292, 'eta': 0.29988883328732407, 'colsample_bytree': 0.46076948240448018, 'max_depth': 103, 'subsample': 0.83383698957963626, 'lambda': 0.45554297465680071, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21243 valid-rmse:4.23002 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.374799 valid-rmse:0.420102 [20] train-rmse:0.340793 valid-rmse:0.387804 [30] train-rmse:0.336033 valid-rmse:0.384372 [39] train-rmse:0.333645 valid-rmse:0.383258 Iteration No: 114 ended. Search finished for the next optimal point. Time taken: 11.6511 Function value obtained: 0.3833 Current minimum: 0.3813 Iteration No: 115 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.17091628810016068, 'colsample_bytree': 0.73355038473526024, 'max_depth': 196, 'subsample': 0.88674801126923419, 'lambda': 84.970467639226015, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98502 valid-rmse:5.00326 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.874803 valid-rmse:0.904345 [20] train-rmse:0.387069 valid-rmse:0.432025 [30] train-rmse:0.346554 valid-rmse:0.393454 [39] train-rmse:0.337775 valid-rmse:0.385888 Iteration No: 115 ended. Search finished for the next optimal point. Time taken: 9.6603 Function value obtained: 0.3859 Current minimum: 0.3813 Iteration No: 116 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.28414077970862439, 'colsample_bytree': 0.48412515654306676, 'max_depth': 129, 'subsample': 0.98502046235630736, 'lambda': 0.74013032621325603, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.30627 valid-rmse:4.32403 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.387808 valid-rmse:0.432463 [20] train-rmse:0.343457 valid-rmse:0.389618 [30] train-rmse:0.339252 valid-rmse:0.38633 [39] train-rmse:0.337591 valid-rmse:0.384999 Iteration No: 116 ended. Search finished for the next optimal point. Time taken: 10.4126 Function value obtained: 0.3850 Current minimum: 0.3813 Iteration No: 117 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 274, 'eta': 0.29714325777767758, 'colsample_bytree': 0.44295236102035229, 'max_depth': 103, 'subsample': 0.86208067857830173, 'lambda': 89.119547082726015, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2366 valid-rmse:4.25514 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.406154 valid-rmse:0.449633 [20] train-rmse:0.349722 valid-rmse:0.395749 [30] train-rmse:0.339433 valid-rmse:0.38698 [39] train-rmse:0.335072 valid-rmse:0.383644 Iteration No: 117 ended. Search finished for the next optimal point. Time taken: 8.7438 Function value obtained: 0.3836 Current minimum: 0.3813 Iteration No: 118 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 153, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21877 valid-rmse:4.23712 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391395 valid-rmse:0.435749 [20] train-rmse:0.341306 valid-rmse:0.388363 [30] train-rmse:0.333748 valid-rmse:0.383211 [39] train-rmse:0.330355 valid-rmse:0.381498 Iteration No: 118 ended. Search finished for the next optimal point. Time taken: 19.4425 Function value obtained: 0.3815 Current minimum: 0.3813 Iteration No: 119 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 39, 'eta': 0.29852316370926174, 'colsample_bytree': 0.41639142744348723, 'max_depth': 106, 'subsample': 0.94286479369217069, 'lambda': 89.945924908355934, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22824 valid-rmse:4.24676 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.398583 valid-rmse:0.443616 [20] train-rmse:0.341347 valid-rmse:0.391352 [30] train-rmse:0.330324 valid-rmse:0.384049 [39] train-rmse:0.326211 valid-rmse:0.382599 Iteration No: 119 ended. Search finished for the next optimal point. Time taken: 10.6777 Function value obtained: 0.3826 Current minimum: 0.3813 Iteration No: 120 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 19, 'eta': 0.21297542633259958, 'colsample_bytree': 0.4498330203615466, 'max_depth': 200, 'subsample': 0.9245803914719295, 'lambda': 85.62013457746886, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73536 valid-rmse:4.75366 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.594935 valid-rmse:0.631788 [20] train-rmse:0.355932 valid-rmse:0.404733 [30] train-rmse:0.335175 valid-rmse:0.387646 [39] train-rmse:0.327936 valid-rmse:0.383341 Iteration No: 120 ended. Search finished for the next optimal point. Time taken: 10.2221 Function value obtained: 0.3833 Current minimum: 0.3813 Iteration No: 121 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 206, 'eta': 0.18059791415423759, 'colsample_bytree': 1.0, 'max_depth': 73, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92219 valid-rmse:4.93974 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.759812 valid-rmse:0.79054 [20] train-rmse:0.353949 valid-rmse:0.402466 [30] train-rmse:0.33536 valid-rmse:0.385103 [39] train-rmse:0.331724 valid-rmse:0.382486 Iteration No: 121 ended. Search finished for the next optimal point. Time taken: 20.3940 Function value obtained: 0.3825 Current minimum: 0.3813 Iteration No: 122 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27477000593891499, 'colsample_bytree': 0.40000000000000002, 'max_depth': 155, 'subsample': 1.0, 'lambda': 40.271656327630488, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.36658 valid-rmse:4.38489 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422824 valid-rmse:0.465321 [20] train-rmse:0.349833 valid-rmse:0.395503 [30] train-rmse:0.33914 valid-rmse:0.386734 [39] train-rmse:0.334848 valid-rmse:0.383962 Iteration No: 122 ended. Search finished for the next optimal point. Time taken: 7.9761 Function value obtained: 0.3840 Current minimum: 0.3813 Iteration No: 123 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.1970234442849918, 'colsample_bytree': 1.0, 'max_depth': 92, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82412 valid-rmse:4.84163 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.645876 valid-rmse:0.679152 [20] train-rmse:0.348229 valid-rmse:0.395658 [30] train-rmse:0.336021 valid-rmse:0.384719 [39] train-rmse:0.332912 valid-rmse:0.382543 Iteration No: 123 ended. Search finished for the next optimal point. Time taken: 18.7379 Function value obtained: 0.3825 Current minimum: 0.3813 Iteration No: 124 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 126, 'eta': 0.22660691247048467, 'colsample_bytree': 1.0, 'max_depth': 139, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.65405 valid-rmse:4.67225 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.533511 valid-rmse:0.571857 [20] train-rmse:0.350179 valid-rmse:0.397339 [30] train-rmse:0.336033 valid-rmse:0.385279 [39] train-rmse:0.330339 valid-rmse:0.381356 Iteration No: 124 ended. Search finished for the next optimal point. Time taken: 16.0947 Function value obtained: 0.3814 Current minimum: 0.3813 Iteration No: 125 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 160, 'subsample': 1.0, 'lambda': 48.768495095863607, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21679 valid-rmse:4.23524 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.388845 valid-rmse:0.433393 [20] train-rmse:0.342333 valid-rmse:0.389227 [30] train-rmse:0.335408 valid-rmse:0.384214 [39] train-rmse:0.332306 valid-rmse:0.382418 Iteration No: 125 ended. Search finished for the next optimal point. Time taken: 18.8937 Function value obtained: 0.3824 Current minimum: 0.3813 Iteration No: 126 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 155, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23715 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391444 valid-rmse:0.435799 [20] train-rmse:0.341649 valid-rmse:0.389637 [30] train-rmse:0.333009 valid-rmse:0.383663 [39] train-rmse:0.329841 valid-rmse:0.382402 Iteration No: 126 ended. Search finished for the next optimal point. Time taken: 19.5547 Function value obtained: 0.3824 Current minimum: 0.3813 Iteration No: 127 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.18418800201069097, 'colsample_bytree': 0.40000000000000002, 'max_depth': 81, 'subsample': 1.0, 'lambda': 38.186247854002026, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90461 valid-rmse:4.92272 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.762746 valid-rmse:0.794188 [20] train-rmse:0.372167 valid-rmse:0.418083 [30] train-rmse:0.341431 valid-rmse:0.389557 [39] train-rmse:0.333669 valid-rmse:0.383601 Iteration No: 127 ended. Search finished for the next optimal point. Time taken: 7.4662 Function value obtained: 0.3836 Current minimum: 0.3813 Iteration No: 128 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 13, 'eta': 0.16438989669859622, 'colsample_bytree': 0.98162593443777513, 'max_depth': 196, 'subsample': 0.98643754869191547, 'lambda': 81.060772217724463, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02322 valid-rmse:5.04134 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.933692 valid-rmse:0.962298 [20] train-rmse:0.39223 valid-rmse:0.438861 [30] train-rmse:0.34062 valid-rmse:0.392542 [39] train-rmse:0.329785 valid-rmse:0.384865 Iteration No: 128 ended. Search finished for the next optimal point. Time taken: 17.1617 Function value obtained: 0.3849 Current minimum: 0.3813 Iteration No: 129 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 281, 'eta': 0.2419794586924712, 'colsample_bytree': 0.68956925417841952, 'max_depth': 8, 'subsample': 0.93077180728794273, 'lambda': 0.96242993160440538, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55751 valid-rmse:4.57523 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.467301 valid-rmse:0.507116 [20] train-rmse:0.354315 valid-rmse:0.399068 [30] train-rmse:0.348441 valid-rmse:0.3936 [39] train-rmse:0.345613 valid-rmse:0.391195 Iteration No: 129 ended. Search finished for the next optimal point. Time taken: 5.6730 Function value obtained: 0.3912 Current minimum: 0.3813 Iteration No: 130 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.19846963992865554, 'colsample_bytree': 1.0, 'max_depth': 114, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82106 valid-rmse:4.83921 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.667732 valid-rmse:0.702309 [20] train-rmse:0.357153 valid-rmse:0.407027 [30] train-rmse:0.33255 valid-rmse:0.387019 [39] train-rmse:0.325516 valid-rmse:0.383182 Iteration No: 130 ended. Search finished for the next optimal point. Time taken: 20.6388 Function value obtained: 0.3832 Current minimum: 0.3813 Iteration No: 131 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24254985626609918, 'colsample_bytree': 1.0, 'max_depth': 153, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55253 valid-rmse:4.56996 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.452852 valid-rmse:0.494202 [20] train-rmse:0.340388 valid-rmse:0.387989 [30] train-rmse:0.334681 valid-rmse:0.383701 [39] train-rmse:0.332363 valid-rmse:0.382493 Iteration No: 131 ended. Search finished for the next optimal point. Time taken: 22.2864 Function value obtained: 0.3825 Current minimum: 0.3813 Iteration No: 132 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 164, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 159, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21907 valid-rmse:4.23748 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.40185 valid-rmse:0.445806 [20] train-rmse:0.347646 valid-rmse:0.394463 [30] train-rmse:0.336325 valid-rmse:0.385574 [39] train-rmse:0.331545 valid-rmse:0.382423 Iteration No: 132 ended. Search finished for the next optimal point. Time taken: 8.5373 Function value obtained: 0.3824 Current minimum: 0.3813 Iteration No: 133 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.23926193117280325, 'colsample_bytree': 1.0, 'max_depth': 147, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.57896 valid-rmse:4.59718 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.492816 valid-rmse:0.532662 [20] train-rmse:0.347946 valid-rmse:0.394921 [30] train-rmse:0.335761 valid-rmse:0.38468 [39] train-rmse:0.330908 valid-rmse:0.3815 Iteration No: 133 ended. Search finished for the next optimal point. Time taken: 16.3549 Function value obtained: 0.3815 Current minimum: 0.3813 Iteration No: 134 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 261, 'eta': 0.17758921638192732, 'colsample_bytree': 0.88151839971795609, 'max_depth': 43, 'subsample': 0.9931479836478122, 'lambda': 87.243146850061677, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94524 valid-rmse:4.96347 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.816308 valid-rmse:0.846961 [20] train-rmse:0.379379 valid-rmse:0.424611 [30] train-rmse:0.345483 valid-rmse:0.392096 [39] train-rmse:0.338096 valid-rmse:0.385496 Iteration No: 134 ended. Search finished for the next optimal point. Time taken: 11.3674 Function value obtained: 0.3855 Current minimum: 0.3813 Iteration No: 135 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 206, 'eta': 0.17707891038229731, 'colsample_bytree': 1.0, 'max_depth': 76, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94319 valid-rmse:4.96075 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.788821 valid-rmse:0.818708 [20] train-rmse:0.356742 valid-rmse:0.404858 [30] train-rmse:0.335467 valid-rmse:0.385231 [39] train-rmse:0.33175 valid-rmse:0.382647 Iteration No: 135 ended. Search finished for the next optimal point. Time taken: 20.2976 Function value obtained: 0.3826 Current minimum: 0.3813 Iteration No: 136 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 298, 'eta': 0.29959406010740686, 'colsample_bytree': 0.98252231369800047, 'max_depth': 111, 'subsample': 0.92428804862647052, 'lambda': 87.786088657493437, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2214 valid-rmse:4.23977 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395759 valid-rmse:0.439378 [20] train-rmse:0.345531 valid-rmse:0.391204 [30] train-rmse:0.337288 valid-rmse:0.384767 [39] train-rmse:0.333666 valid-rmse:0.382433 Iteration No: 136 ended. Search finished for the next optimal point. Time taken: 16.0282 Function value obtained: 0.3824 Current minimum: 0.3813 Iteration No: 137 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 295, 'eta': 0.24840173867628473, 'colsample_bytree': 0.88133611126330691, 'max_depth': 119, 'subsample': 0.96918148960660111, 'lambda': 87.684056391754112, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.52516 valid-rmse:4.54352 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.472264 valid-rmse:0.512824 [20] train-rmse:0.35078 valid-rmse:0.396294 [30] train-rmse:0.33955 valid-rmse:0.386461 [39] train-rmse:0.334664 valid-rmse:0.382725 Iteration No: 137 ended. Search finished for the next optimal point. Time taken: 13.1073 Function value obtained: 0.3827 Current minimum: 0.3813 Iteration No: 138 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 172, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 154, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2188 valid-rmse:4.23716 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391749 valid-rmse:0.43626 [20] train-rmse:0.341689 valid-rmse:0.389127 [30] train-rmse:0.333629 valid-rmse:0.383277 [39] train-rmse:0.329962 valid-rmse:0.381307 Iteration No: 138 ended. Search finished for the next optimal point. Time taken: 19.0600 Function value obtained: 0.3813 Current minimum: 0.3813 Iteration No: 139 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 41, 'eta': 0.16871944995199184, 'colsample_bytree': 0.98478620171367925, 'max_depth': 6, 'subsample': 0.95060449096566657, 'lambda': 0.22404064143325242, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99374 valid-rmse:5.01138 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.876654 valid-rmse:0.904721 [20] train-rmse:0.390798 valid-rmse:0.43467 [30] train-rmse:0.360406 valid-rmse:0.405138 [39] train-rmse:0.354401 valid-rmse:0.399459 Iteration No: 139 ended. Search finished for the next optimal point. Time taken: 5.7533 Function value obtained: 0.3995 Current minimum: 0.3813 Iteration No: 140 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 115, 'eta': 0.22217783752381443, 'colsample_bytree': 0.93389010134247485, 'max_depth': 81, 'subsample': 0.80545818602201047, 'lambda': 86.531077157044422, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.68079 valid-rmse:4.69898 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.552655 valid-rmse:0.590086 [20] train-rmse:0.352262 valid-rmse:0.399056 [30] train-rmse:0.337721 valid-rmse:0.386563 [39] train-rmse:0.332478 valid-rmse:0.38306 Iteration No: 140 ended. Search finished for the next optimal point. Time taken: 14.2823 Function value obtained: 0.3831 Current minimum: 0.3813 Iteration No: 141 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.295186201563649, 'colsample_bytree': 0.69409112132796502, 'max_depth': 191, 'subsample': 0.82266456127039578, 'lambda': 89.145899320484361, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.24842 valid-rmse:4.26692 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.402398 valid-rmse:0.44565 [20] train-rmse:0.352405 valid-rmse:0.397024 [30] train-rmse:0.344252 valid-rmse:0.389383 [39] train-rmse:0.341065 valid-rmse:0.386831 Iteration No: 141 ended. Search finished for the next optimal point. Time taken: 10.4122 Function value obtained: 0.3868 Current minimum: 0.3813 Iteration No: 142 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.1930265784555843, 'colsample_bytree': 0.40000000000000002, 'max_depth': 71, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84854 valid-rmse:4.86601 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.677984 valid-rmse:0.710223 [20] train-rmse:0.357034 valid-rmse:0.403256 [30] train-rmse:0.340603 valid-rmse:0.387939 [39] train-rmse:0.335916 valid-rmse:0.384405 Iteration No: 142 ended. Search finished for the next optimal point. Time taken: 9.0706 Function value obtained: 0.3844 Current minimum: 0.3813 Iteration No: 143 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 16, 'eta': 0.14227801213710656, 'colsample_bytree': 0.44630463636801798, 'max_depth': 139, 'subsample': 0.93403319329714107, 'lambda': 1.2248520377788372, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.15181 valid-rmse:5.16967 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.17244 valid-rmse:1.19744 [20] train-rmse:0.420681 valid-rmse:0.470212 [30] train-rmse:0.33059 valid-rmse:0.391608 [39] train-rmse:0.321258 valid-rmse:0.385056 Iteration No: 143 ended. Search finished for the next optimal point. Time taken: 14.6063 Function value obtained: 0.3851 Current minimum: 0.3813 Iteration No: 144 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 223, 'eta': 0.26379376199202664, 'colsample_bytree': 0.41215075945393231, 'max_depth': 71, 'subsample': 0.99937813987637192, 'lambda': 52.404636376260356, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43232 valid-rmse:4.45075 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.438335 valid-rmse:0.480618 [20] train-rmse:0.347443 valid-rmse:0.394026 [30] train-rmse:0.33619 valid-rmse:0.384876 [39] train-rmse:0.331929 valid-rmse:0.382149 Iteration No: 144 ended. Search finished for the next optimal point. Time taken: 8.9887 Function value obtained: 0.3821 Current minimum: 0.3813 Iteration No: 145 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.19341228316227677, 'colsample_bytree': 0.40000000000000002, 'max_depth': 73, 'subsample': 1.0, 'lambda': 48.7927107517107, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85015 valid-rmse:4.8683 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.700853 valid-rmse:0.733872 [20] train-rmse:0.36715 valid-rmse:0.413214 [30] train-rmse:0.341119 valid-rmse:0.389277 [39] train-rmse:0.333917 valid-rmse:0.383636 Iteration No: 145 ended. Search finished for the next optimal point. Time taken: 7.6828 Function value obtained: 0.3836 Current minimum: 0.3813 Iteration No: 146 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.26568721507621373, 'colsample_bytree': 1.0, 'max_depth': 124, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42221 valid-rmse:4.44048 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.43319 valid-rmse:0.475727 [20] train-rmse:0.343825 valid-rmse:0.390849 [30] train-rmse:0.334417 valid-rmse:0.38355 [39] train-rmse:0.329871 valid-rmse:0.380916 Iteration No: 146 ended. Search finished for the next optimal point. Time taken: 18.4807 Function value obtained: 0.3809 Current minimum: 0.3809 Iteration No: 147 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 28, 'eta': 0.12089088679022261, 'colsample_bytree': 0.95670631701970144, 'max_depth': 196, 'subsample': 0.97406277067651881, 'lambda': 0.20391325808058219, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.27871 valid-rmse:5.2964 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.49761 valid-rmse:1.51959 [20] train-rmse:0.531178 valid-rmse:0.57079 [30] train-rmse:0.357973 valid-rmse:0.408533 [39] train-rmse:0.338151 valid-rmse:0.389772 Iteration No: 147 ended. Search finished for the next optimal point. Time taken: 20.5927 Function value obtained: 0.3898 Current minimum: 0.3809 Iteration No: 148 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.25359528045460322, 'colsample_bytree': 0.47668001687219153, 'max_depth': 198, 'subsample': 0.99475220450706647, 'lambda': 0.57244719798677612, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.48814 valid-rmse:4.50574 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.42973 valid-rmse:0.472158 [20] train-rmse:0.339708 valid-rmse:0.386956 [30] train-rmse:0.334017 valid-rmse:0.382584 [39] train-rmse:0.331156 valid-rmse:0.38078 Iteration No: 148 ended. Search finished for the next optimal point. Time taken: 12.1889 Function value obtained: 0.3808 Current minimum: 0.3808 Iteration No: 149 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.15365655370294592, 'colsample_bytree': 0.62483879866288605, 'max_depth': 95, 'subsample': 0.97699836795153883, 'lambda': 0.29652225150180789, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.08357 valid-rmse:5.10126 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.02615 valid-rmse:1.05178 [20] train-rmse:0.395931 valid-rmse:0.440372 [30] train-rmse:0.345521 valid-rmse:0.392262 [39] train-rmse:0.340101 valid-rmse:0.387063 Iteration No: 149 ended. Search finished for the next optimal point. Time taken: 10.6859 Function value obtained: 0.3871 Current minimum: 0.3808 Iteration No: 150 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26610375146616527, 'colsample_bytree': 1.0, 'max_depth': 136, 'subsample': 1.0, 'lambda': 39.21548820455665, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4176 valid-rmse:4.43595 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.426319 valid-rmse:0.469267 [20] train-rmse:0.343696 valid-rmse:0.390339 [30] train-rmse:0.33581 valid-rmse:0.384232 [39] train-rmse:0.332324 valid-rmse:0.382179 Iteration No: 150 ended. Search finished for the next optimal point. Time taken: 17.9599 Function value obtained: 0.3822 Current minimum: 0.3808 Iteration No: 151 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.25724454977254241, 'colsample_bytree': 0.51536533198965084, 'max_depth': 49, 'subsample': 0.96540539084494392, 'lambda': 80.491675590417614, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.47248 valid-rmse:4.49088 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.44995 valid-rmse:0.492613 [20] train-rmse:0.340576 valid-rmse:0.391765 [30] train-rmse:0.328037 valid-rmse:0.383798 [39] train-rmse:0.323096 valid-rmse:0.382026 Iteration No: 151 ended. Search finished for the next optimal point. Time taken: 13.7199 Function value obtained: 0.3820 Current minimum: 0.3808 Iteration No: 152 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 17, 'eta': 0.24024979483509887, 'colsample_bytree': 0.41065300181224468, 'max_depth': 66, 'subsample': 0.84859350514100396, 'lambda': 87.03163262259794, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.57378 valid-rmse:4.59215 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.496797 valid-rmse:0.537387 [20] train-rmse:0.349577 valid-rmse:0.399134 [30] train-rmse:0.333455 valid-rmse:0.386656 [39] train-rmse:0.327161 valid-rmse:0.382987 Iteration No: 152 ended. Search finished for the next optimal point. Time taken: 10.7002 Function value obtained: 0.3830 Current minimum: 0.3808 Iteration No: 153 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 28, 'eta': 0.29715332074459833, 'colsample_bytree': 0.8917988391878402, 'max_depth': 6, 'subsample': 0.89450338597507373, 'lambda': 88.611847531246568, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23641 valid-rmse:4.25488 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.406765 valid-rmse:0.449882 [20] train-rmse:0.362882 valid-rmse:0.407099 [30] train-rmse:0.355282 valid-rmse:0.40041 [39] train-rmse:0.350178 valid-rmse:0.395949 Iteration No: 153 ended. Search finished for the next optimal point. Time taken: 5.8208 Function value obtained: 0.3959 Current minimum: 0.3808 Iteration No: 154 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.21284584707622173, 'colsample_bytree': 0.40000000000000002, 'max_depth': 81, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73588 valid-rmse:4.75411 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.599913 valid-rmse:0.636498 [20] train-rmse:0.359952 valid-rmse:0.408839 [30] train-rmse:0.336492 valid-rmse:0.390012 [39] train-rmse:0.327979 valid-rmse:0.384706 Iteration No: 154 ended. Search finished for the next optimal point. Time taken: 10.4262 Function value obtained: 0.3847 Current minimum: 0.3808 Iteration No: 155 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 295, 'eta': 0.16162108001098974, 'colsample_bytree': 0.94554964669824249, 'max_depth': 83, 'subsample': 0.95542541374538492, 'lambda': 78.045001529140379, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.03967 valid-rmse:5.0578 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.964137 valid-rmse:0.992001 [20] train-rmse:0.40274 valid-rmse:0.446829 [30] train-rmse:0.350855 valid-rmse:0.397259 [39] train-rmse:0.341067 valid-rmse:0.387957 Iteration No: 155 ended. Search finished for the next optimal point. Time taken: 11.1792 Function value obtained: 0.3880 Current minimum: 0.3808 Iteration No: 156 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 119, 'eta': 0.26435752864449125, 'colsample_bytree': 1.0, 'max_depth': 114, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4301 valid-rmse:4.44837 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.435727 valid-rmse:0.478877 [20] train-rmse:0.343509 valid-rmse:0.391657 [30] train-rmse:0.33284 valid-rmse:0.383384 [39] train-rmse:0.328918 valid-rmse:0.381445 Iteration No: 156 ended. Search finished for the next optimal point. Time taken: 18.6616 Function value obtained: 0.3814 Current minimum: 0.3808 Iteration No: 157 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.26501061572530538, 'colsample_bytree': 0.50699890636656786, 'max_depth': 195, 'subsample': 0.99125875741466762, 'lambda': 88.345986830106057, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42656 valid-rmse:4.4449 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.436637 valid-rmse:0.479976 [20] train-rmse:0.340445 valid-rmse:0.39182 [30] train-rmse:0.328556 valid-rmse:0.384019 [39] train-rmse:0.323707 valid-rmse:0.38228 Iteration No: 157 ended. Search finished for the next optimal point. Time taken: 14.3004 Function value obtained: 0.3823 Current minimum: 0.3808 Iteration No: 158 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.29985729466788014, 'colsample_bytree': 0.60616685696836403, 'max_depth': 200, 'subsample': 0.88978943494637142, 'lambda': 84.281361131971408, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22023 valid-rmse:4.23875 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393481 valid-rmse:0.439701 [20] train-rmse:0.337474 valid-rmse:0.390412 [30] train-rmse:0.327464 valid-rmse:0.38535 [39] train-rmse:0.3237 valid-rmse:0.384342 Iteration No: 158 ended. Search finished for the next optimal point. Time taken: 18.0105 Function value obtained: 0.3843 Current minimum: 0.3808 Iteration No: 159 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 126, 'eta': 0.26790085734611391, 'colsample_bytree': 0.40000000000000002, 'max_depth': 122, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40934 valid-rmse:4.42767 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.438068 valid-rmse:0.480908 [20] train-rmse:0.349701 valid-rmse:0.397346 [30] train-rmse:0.336617 valid-rmse:0.38686 [39] train-rmse:0.33132 valid-rmse:0.383388 Iteration No: 159 ended. Search finished for the next optimal point. Time taken: 8.9878 Function value obtained: 0.3834 Current minimum: 0.3808 Iteration No: 160 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.18930275376491143, 'colsample_bytree': 1.0, 'max_depth': 77, 'subsample': 1.0, 'lambda': 42.813981497114604, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87409 valid-rmse:4.89229 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.71984 valid-rmse:0.751993 [20] train-rmse:0.36161 valid-rmse:0.407798 [30] train-rmse:0.337529 valid-rmse:0.385638 [39] train-rmse:0.331829 valid-rmse:0.381688 Iteration No: 160 ended. Search finished for the next optimal point. Time taken: 15.6254 Function value obtained: 0.3817 Current minimum: 0.3808 Iteration No: 161 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.22186328410879541, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.67592 valid-rmse:4.69339 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.520313 valid-rmse:0.558556 [20] train-rmse:0.342122 valid-rmse:0.390011 [30] train-rmse:0.334683 valid-rmse:0.383654 [39] train-rmse:0.332475 valid-rmse:0.382467 Iteration No: 161 ended. Search finished for the next optimal point. Time taken: 20.9168 Function value obtained: 0.3825 Current minimum: 0.3808 Iteration No: 162 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 152, 'subsample': 1.0, 'lambda': 46.022138427657552, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21666 valid-rmse:4.23511 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.388361 valid-rmse:0.432562 [20] train-rmse:0.342348 valid-rmse:0.388787 [30] train-rmse:0.335282 valid-rmse:0.383506 [39] train-rmse:0.332557 valid-rmse:0.382122 Iteration No: 162 ended. Search finished for the next optimal point. Time taken: 18.9903 Function value obtained: 0.3821 Current minimum: 0.3808 Iteration No: 163 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.26219944903809322, 'colsample_bytree': 1.0, 'max_depth': 114, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4429 valid-rmse:4.46116 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.437525 valid-rmse:0.481486 [20] train-rmse:0.338472 valid-rmse:0.391663 [30] train-rmse:0.327339 valid-rmse:0.385233 [39] train-rmse:0.32295 valid-rmse:0.384003 Iteration No: 163 ended. Search finished for the next optimal point. Time taken: 27.1892 Function value obtained: 0.3840 Current minimum: 0.3808 Iteration No: 164 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 23, 'eta': 0.17971408815179241, 'colsample_bytree': 0.95354288431350342, 'max_depth': 196, 'subsample': 0.97590993489532663, 'lambda': 8.2409356217797072, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92922 valid-rmse:4.9471 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.780197 valid-rmse:0.810981 [20] train-rmse:0.354265 valid-rmse:0.407266 [30] train-rmse:0.326614 valid-rmse:0.385909 [39] train-rmse:0.321985 valid-rmse:0.384466 Iteration No: 164 ended. Search finished for the next optimal point. Time taken: 27.9913 Function value obtained: 0.3845 Current minimum: 0.3808 Iteration No: 165 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 280, 'eta': 0.29944969555013412, 'colsample_bytree': 0.99916925422864422, 'max_depth': 86, 'subsample': 0.96877199982219631, 'lambda': 55.047936778977039, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22039 valid-rmse:4.23883 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.389639 valid-rmse:0.434111 [20] train-rmse:0.343056 valid-rmse:0.389807 [30] train-rmse:0.335703 valid-rmse:0.384255 [39] train-rmse:0.332368 valid-rmse:0.382279 Iteration No: 165 ended. Search finished for the next optimal point. Time taken: 18.9701 Function value obtained: 0.3823 Current minimum: 0.3808 Iteration No: 166 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 291, 'eta': 0.24178162455317634, 'colsample_bytree': 0.96303844058270127, 'max_depth': 71, 'subsample': 0.82575510918430206, 'lambda': 32.117797323621971, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56201 valid-rmse:4.58028 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.478295 valid-rmse:0.518301 [20] train-rmse:0.34806 valid-rmse:0.394412 [30] train-rmse:0.337985 valid-rmse:0.385368 [39] train-rmse:0.334207 valid-rmse:0.38273 Iteration No: 166 ended. Search finished for the next optimal point. Time taken: 15.5853 Function value obtained: 0.3827 Current minimum: 0.3808 Iteration No: 167 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26610007647044476, 'colsample_bytree': 1.0, 'max_depth': 123, 'subsample': 1.0, 'lambda': 39.014538397249588, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41761 valid-rmse:4.43596 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.42631 valid-rmse:0.469264 [20] train-rmse:0.343919 valid-rmse:0.390502 [30] train-rmse:0.336101 valid-rmse:0.384478 [39] train-rmse:0.332405 valid-rmse:0.382221 Iteration No: 167 ended. Search finished for the next optimal point. Time taken: 17.7270 Function value obtained: 0.3822 Current minimum: 0.3808 Iteration No: 168 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.19350684585004818, 'colsample_bytree': 0.40000000000000002, 'max_depth': 70, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84568 valid-rmse:4.86315 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.675168 valid-rmse:0.707387 [20] train-rmse:0.357208 valid-rmse:0.403138 [30] train-rmse:0.34098 valid-rmse:0.388065 [39] train-rmse:0.336313 valid-rmse:0.384634 Iteration No: 168 ended. Search finished for the next optimal point. Time taken: 9.4920 Function value obtained: 0.3846 Current minimum: 0.3808 Iteration No: 169 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.12928341048938011, 'colsample_bytree': 0.95244359028660819, 'max_depth': 73, 'subsample': 0.95276875102925163, 'lambda': 88.029059056111194, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.23198 valid-rmse:5.25007 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.38193 valid-rmse:1.40614 [20] train-rmse:0.510801 valid-rmse:0.551091 [30] train-rmse:0.365755 valid-rmse:0.414685 [39] train-rmse:0.340695 valid-rmse:0.392486 Iteration No: 169 ended. Search finished for the next optimal point. Time taken: 14.3100 Function value obtained: 0.3925 Current minimum: 0.3808 Iteration No: 170 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.29914990914584794, 'colsample_bytree': 0.60779342661734903, 'max_depth': 198, 'subsample': 0.98183580320996988, 'lambda': 24.288017919565366, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22057 valid-rmse:4.23869 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.380848 valid-rmse:0.429609 [20] train-rmse:0.331008 valid-rmse:0.390429 [30] train-rmse:0.324549 valid-rmse:0.388913 [39] train-rmse:0.322782 valid-rmse:0.389198 Iteration No: 170 ended. Search finished for the next optimal point. Time taken: 24.2872 Function value obtained: 0.3892 Current minimum: 0.3808 Iteration No: 171 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 29, 'eta': 0.2999985254171128, 'colsample_bytree': 0.42973518448756087, 'max_depth': 61, 'subsample': 0.99139317930601023, 'lambda': 85.8603439041527, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21909 valid-rmse:4.23752 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.398056 valid-rmse:0.44246 [20] train-rmse:0.349163 valid-rmse:0.395441 [30] train-rmse:0.340733 valid-rmse:0.388029 [39] train-rmse:0.33799 valid-rmse:0.385868 Iteration No: 171 ended. Search finished for the next optimal point. Time taken: 11.2859 Function value obtained: 0.3859 Current minimum: 0.3808 Iteration No: 172 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 298, 'eta': 0.18546479561014079, 'colsample_bytree': 0.98416384430684212, 'max_depth': 105, 'subsample': 0.84513296654334713, 'lambda': 5.8287538614395649, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89494 valid-rmse:4.91283 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.736288 valid-rmse:0.767368 [20] train-rmse:0.359861 valid-rmse:0.405741 [30] train-rmse:0.339636 valid-rmse:0.386465 [39] train-rmse:0.335285 valid-rmse:0.38283 Iteration No: 172 ended. Search finished for the next optimal point. Time taken: 15.3451 Function value obtained: 0.3828 Current minimum: 0.3808 Iteration No: 173 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 26, 'eta': 0.12183928183959471, 'colsample_bytree': 0.88899022885359047, 'max_depth': 16, 'subsample': 0.8069265642627661, 'lambda': 86.487417844617369, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.27661 valid-rmse:5.29475 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.50601 valid-rmse:1.52949 [20] train-rmse:0.559633 valid-rmse:0.597847 [30] train-rmse:0.3786 valid-rmse:0.425712 [39] train-rmse:0.347305 valid-rmse:0.396416 Iteration No: 173 ended. Search finished for the next optimal point. Time taken: 10.0198 Function value obtained: 0.3964 Current minimum: 0.3808 Iteration No: 174 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 244, 'eta': 0.27917524690838091, 'colsample_bytree': 0.55478204203763948, 'max_depth': 6, 'subsample': 0.99757132141990279, 'lambda': 89.58993570089325, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3427 valid-rmse:4.36108 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.426958 valid-rmse:0.469047 [20] train-rmse:0.365416 valid-rmse:0.40868 [30] train-rmse:0.356802 valid-rmse:0.400688 [39] train-rmse:0.352611 valid-rmse:0.397094 Iteration No: 174 ended. Search finished for the next optimal point. Time taken: 5.1442 Function value obtained: 0.3971 Current minimum: 0.3808 Iteration No: 175 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.18962112179608737, 'colsample_bytree': 1.0, 'max_depth': 84, 'subsample': 0.8886080888025174, 'lambda': 34.973923086005037, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87206 valid-rmse:4.89026 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.717431 valid-rmse:0.7498 [20] train-rmse:0.361063 valid-rmse:0.407448 [30] train-rmse:0.338325 valid-rmse:0.386535 [39] train-rmse:0.332359 valid-rmse:0.382062 Iteration No: 175 ended. Search finished for the next optimal point. Time taken: 15.8930 Function value obtained: 0.3821 Current minimum: 0.3808 Iteration No: 176 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 47, 'eta': 0.14761564290268983, 'colsample_bytree': 0.53382616957490225, 'max_depth': 103, 'subsample': 0.80286699069197831, 'lambda': 2.483577513693517, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.12024 valid-rmse:5.13805 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.10434 valid-rmse:1.12966 [20] train-rmse:0.407172 valid-rmse:0.453264 [30] train-rmse:0.334479 valid-rmse:0.387569 [39] train-rmse:0.326214 valid-rmse:0.381527 Iteration No: 176 ended. Search finished for the next optimal point. Time taken: 13.5078 Function value obtained: 0.3815 Current minimum: 0.3808 Iteration No: 177 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 121, 'eta': 0.26760072303234728, 'colsample_bytree': 0.75867362693782614, 'max_depth': 143, 'subsample': 0.80083211331446014, 'lambda': 86.933138248629447, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41188 valid-rmse:4.43029 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.432593 valid-rmse:0.474755 [20] train-rmse:0.345168 valid-rmse:0.391745 [30] train-rmse:0.33529 valid-rmse:0.383823 [39] train-rmse:0.331676 valid-rmse:0.381886 Iteration No: 177 ended. Search finished for the next optimal point. Time taken: 14.8046 Function value obtained: 0.3819 Current minimum: 0.3808 Iteration No: 178 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 200, 'eta': 0.17920550303331154, 'colsample_bytree': 1.0, 'max_depth': 93, 'subsample': 0.86367449597961077, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93048 valid-rmse:4.94799 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.771228 valid-rmse:0.80126 [20] train-rmse:0.355757 valid-rmse:0.403677 [30] train-rmse:0.335865 valid-rmse:0.385321 [39] train-rmse:0.332194 valid-rmse:0.382552 Iteration No: 178 ended. Search finished for the next optimal point. Time taken: 20.7653 Function value obtained: 0.3826 Current minimum: 0.3808 Iteration No: 179 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 60, 'eta': 0.1712730467661755, 'colsample_bytree': 0.79802845995723093, 'max_depth': 56, 'subsample': 0.80176227676817524, 'lambda': 67.394656423074835, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98268 valid-rmse:5.00088 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.869084 valid-rmse:0.899064 [20] train-rmse:0.383491 valid-rmse:0.430099 [30] train-rmse:0.342546 valid-rmse:0.39209 [39] train-rmse:0.333973 valid-rmse:0.385039 Iteration No: 179 ended. Search finished for the next optimal point. Time taken: 13.2062 Function value obtained: 0.3850 Current minimum: 0.3808 Iteration No: 180 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.20882060276128894, 'colsample_bytree': 1.0, 'max_depth': 124, 'subsample': 0.88508838214570951, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.75382 valid-rmse:4.77134 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.58063 valid-rmse:0.616218 [20] train-rmse:0.345531 valid-rmse:0.392703 [30] train-rmse:0.336495 valid-rmse:0.384723 [39] train-rmse:0.3338 valid-rmse:0.382934 Iteration No: 180 ended. Search finished for the next optimal point. Time taken: 18.7891 Function value obtained: 0.3829 Current minimum: 0.3808 Iteration No: 181 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.19199025226728778, 'colsample_bytree': 1.0, 'max_depth': 101, 'subsample': 0.82588865981039017, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8599 valid-rmse:4.87806 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.7103 valid-rmse:0.743401 [20] train-rmse:0.363429 valid-rmse:0.411918 [30] train-rmse:0.336117 valid-rmse:0.388392 [39] train-rmse:0.328757 valid-rmse:0.384013 Iteration No: 181 ended. Search finished for the next optimal point. Time taken: 20.2772 Function value obtained: 0.3840 Current minimum: 0.3808 Iteration No: 182 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 169, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 0.80000000000000004, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21959 valid-rmse:4.23796 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.394197 valid-rmse:0.43827 [20] train-rmse:0.34433 valid-rmse:0.391266 [30] train-rmse:0.336089 valid-rmse:0.384857 [39] train-rmse:0.332675 valid-rmse:0.38317 Iteration No: 182 ended. Search finished for the next optimal point. Time taken: 18.2332 Function value obtained: 0.3832 Current minimum: 0.3808 Iteration No: 183 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 169, 'eta': 0.18148030701753134, 'colsample_bytree': 1.0, 'max_depth': 82, 'subsample': 0.86016561926987267, 'lambda': 31.876673817055845, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92035 valid-rmse:4.93853 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.776783 valid-rmse:0.807538 [20] train-rmse:0.367874 valid-rmse:0.41376 [30] train-rmse:0.339781 valid-rmse:0.387727 [39] train-rmse:0.333768 valid-rmse:0.382731 Iteration No: 183 ended. Search finished for the next optimal point. Time taken: 15.8425 Function value obtained: 0.3827 Current minimum: 0.3808 Iteration No: 184 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 214, 'eta': 0.17272094274404279, 'colsample_bytree': 1.0, 'max_depth': 92, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96926 valid-rmse:4.98681 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.827018 valid-rmse:0.855682 [20] train-rmse:0.361829 valid-rmse:0.40874 [30] train-rmse:0.337153 valid-rmse:0.385657 [39] train-rmse:0.333206 valid-rmse:0.382644 Iteration No: 184 ended. Search finished for the next optimal point. Time taken: 18.6525 Function value obtained: 0.3826 Current minimum: 0.3808 Iteration No: 185 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 114, 'eta': 0.24299804540497222, 'colsample_bytree': 0.91229531283804632, 'max_depth': 198, 'subsample': 0.80644741867119607, 'lambda': 85.943799278208388, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55726 valid-rmse:4.57549 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.484765 valid-rmse:0.52511 [20] train-rmse:0.34833 valid-rmse:0.394943 [30] train-rmse:0.335976 valid-rmse:0.38438 [39] train-rmse:0.331709 valid-rmse:0.381772 Iteration No: 185 ended. Search finished for the next optimal point. Time taken: 15.9008 Function value obtained: 0.3818 Current minimum: 0.3808 Iteration No: 186 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 46, 'eta': 0.11481739713178946, 'colsample_bytree': 0.83831310214758958, 'max_depth': 194, 'subsample': 0.80016303122176335, 'lambda': 11.750081863523301, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.31642 valid-rmse:5.33441 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.62119 valid-rmse:1.64302 [20] train-rmse:0.598564 valid-rmse:0.634672 [30] train-rmse:0.376498 valid-rmse:0.424447 [39] train-rmse:0.339562 valid-rmse:0.391161 Iteration No: 186 ended. Search finished for the next optimal point. Time taken: 12.9561 Function value obtained: 0.3912 Current minimum: 0.3808 Iteration No: 187 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.23046108716962002, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 40.180303553156136, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62938 valid-rmse:4.64765 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.513397 valid-rmse:0.552322 [20] train-rmse:0.348296 valid-rmse:0.394509 [30] train-rmse:0.33752 valid-rmse:0.385069 [39] train-rmse:0.333693 valid-rmse:0.382433 Iteration No: 187 ended. Search finished for the next optimal point. Time taken: 16.6289 Function value obtained: 0.3824 Current minimum: 0.3808 Iteration No: 188 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 112, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23714 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.389419 valid-rmse:0.436215 [20] train-rmse:0.334761 valid-rmse:0.38915 [30] train-rmse:0.326479 valid-rmse:0.385701 [39] train-rmse:0.322858 valid-rmse:0.384953 Iteration No: 188 ended. Search finished for the next optimal point. Time taken: 30.7379 Function value obtained: 0.3850 Current minimum: 0.3808 Iteration No: 189 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.597213428776485, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2168 valid-rmse:4.23519 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.396493 valid-rmse:0.440007 [20] train-rmse:0.347718 valid-rmse:0.393738 [30] train-rmse:0.338104 valid-rmse:0.386064 [39] train-rmse:0.334239 valid-rmse:0.383672 Iteration No: 189 ended. Search finished for the next optimal point. Time taken: 9.7884 Function value obtained: 0.3837 Current minimum: 0.3808 Iteration No: 190 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 200, 'eta': 0.18290663164291054, 'colsample_bytree': 0.69240449719430996, 'max_depth': 118, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90841 valid-rmse:4.92594 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.742178 valid-rmse:0.772941 [20] train-rmse:0.351711 valid-rmse:0.400047 [30] train-rmse:0.333862 valid-rmse:0.383592 [39] train-rmse:0.330315 valid-rmse:0.381177 Iteration No: 190 ended. Search finished for the next optimal point. Time taken: 16.7000 Function value obtained: 0.3812 Current minimum: 0.3808 Iteration No: 191 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 298, 'eta': 0.2944537439628554, 'colsample_bytree': 0.94824133749091055, 'max_depth': 90, 'subsample': 0.99405161201429593, 'lambda': 1.8769550535308572, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.245 valid-rmse:4.26272 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.37579 valid-rmse:0.421771 [20] train-rmse:0.338798 valid-rmse:0.386942 [30] train-rmse:0.334184 valid-rmse:0.383814 [39] train-rmse:0.332144 valid-rmse:0.383065 Iteration No: 191 ended. Search finished for the next optimal point. Time taken: 23.1395 Function value obtained: 0.3831 Current minimum: 0.3808 Iteration No: 192 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 276, 'eta': 0.29946886527027639, 'colsample_bytree': 0.79192089437205748, 'max_depth': 72, 'subsample': 0.97663159485019024, 'lambda': 43.200854628944747, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22023 valid-rmse:4.23887 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.390698 valid-rmse:0.435253 [20] train-rmse:0.346873 valid-rmse:0.392358 [30] train-rmse:0.341281 valid-rmse:0.387637 [39] train-rmse:0.338632 valid-rmse:0.385311 Iteration No: 192 ended. Search finished for the next optimal point. Time taken: 14.7774 Function value obtained: 0.3853 Current minimum: 0.3808 Iteration No: 193 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 122, 'subsample': 1.0, 'lambda': 39.03969972724844, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21679 valid-rmse:4.23513 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395794 valid-rmse:0.439566 [20] train-rmse:0.34721 valid-rmse:0.393566 [30] train-rmse:0.338042 valid-rmse:0.386358 [39] train-rmse:0.333933 valid-rmse:0.3839 Iteration No: 193 ended. Search finished for the next optimal point. Time taken: 9.8092 Function value obtained: 0.3839 Current minimum: 0.3808 Iteration No: 194 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 284, 'eta': 0.17054981790012999, 'colsample_bytree': 0.76127895494913012, 'max_depth': 54, 'subsample': 0.80644404006585135, 'lambda': 76.663959181285207, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98721 valid-rmse:5.00542 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.878617 valid-rmse:0.90792 [20] train-rmse:0.390398 valid-rmse:0.434926 [30] train-rmse:0.350117 valid-rmse:0.395983 [39] train-rmse:0.341464 valid-rmse:0.387746 Iteration No: 194 ended. Search finished for the next optimal point. Time taken: 10.4746 Function value obtained: 0.3877 Current minimum: 0.3808 Iteration No: 195 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 282, 'eta': 0.26056528550348856, 'colsample_bytree': 0.96716763904694159, 'max_depth': 134, 'subsample': 0.81147559348223064, 'lambda': 83.87960012718716, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45301 valid-rmse:4.47129 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.446219 valid-rmse:0.487936 [20] train-rmse:0.350761 valid-rmse:0.396514 [30] train-rmse:0.339491 valid-rmse:0.386241 [39] train-rmse:0.335377 valid-rmse:0.383123 Iteration No: 195 ended. Search finished for the next optimal point. Time taken: 15.1320 Function value obtained: 0.3831 Current minimum: 0.3808 Iteration No: 196 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 20, 'eta': 0.24336122987053491, 'colsample_bytree': 0.47905883561080054, 'max_depth': 72, 'subsample': 0.99991082920309937, 'lambda': 12.320571407887391, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55123 valid-rmse:4.56916 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.464066 valid-rmse:0.506498 [20] train-rmse:0.331928 valid-rmse:0.388353 [30] train-rmse:0.323267 valid-rmse:0.384772 [39] train-rmse:0.320985 valid-rmse:0.385094 Iteration No: 196 ended. Search finished for the next optimal point. Time taken: 18.6286 Function value obtained: 0.3851 Current minimum: 0.3808 Iteration No: 197 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 195, 'eta': 0.18659806835413828, 'colsample_bytree': 0.67844407412647834, 'max_depth': 101, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8864 valid-rmse:4.90392 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.713902 valid-rmse:0.745219 [20] train-rmse:0.34949 valid-rmse:0.397516 [30] train-rmse:0.333213 valid-rmse:0.382805 [39] train-rmse:0.329796 valid-rmse:0.380825 Iteration No: 197 ended. Search finished for the next optimal point. Time taken: 16.4251 Function value obtained: 0.3808 Current minimum: 0.3808 Iteration No: 198 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.19298081093118419, 'colsample_bytree': 0.70993205634532908, 'max_depth': 94, 'subsample': 1.0, 'lambda': 24.038225613781645, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85166 valid-rmse:4.8696 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.691671 valid-rmse:0.724132 [20] train-rmse:0.356472 valid-rmse:0.403144 [30] train-rmse:0.335985 valid-rmse:0.38454 [39] train-rmse:0.330381 valid-rmse:0.380659 Iteration No: 198 ended. Search finished for the next optimal point. Time taken: 13.5216 Function value obtained: 0.3807 Current minimum: 0.3807 Iteration No: 199 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 14, 'eta': 0.1904547072366955, 'colsample_bytree': 0.4172088599881143, 'max_depth': 21, 'subsample': 0.91068705999650412, 'lambda': 15.756911756309199, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86627 valid-rmse:4.88427 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.709916 valid-rmse:0.742854 [20] train-rmse:0.361182 valid-rmse:0.409225 [30] train-rmse:0.340405 valid-rmse:0.389768 [39] train-rmse:0.336942 valid-rmse:0.386866 Iteration No: 199 ended. Search finished for the next optimal point. Time taken: 10.1088 Function value obtained: 0.3869 Current minimum: 0.3807 Iteration No: 200 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.1752921949100735, 'colsample_bytree': 0.40667948288172318, 'max_depth': 18, 'subsample': 0.96834406335393142, 'lambda': 13.789760074817577, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95633 valid-rmse:4.97431 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.825295 valid-rmse:0.855555 [20] train-rmse:0.367812 valid-rmse:0.417489 [30] train-rmse:0.331562 valid-rmse:0.387051 [39] train-rmse:0.325986 valid-rmse:0.383359 Iteration No: 200 ended. Search finished for the next optimal point. Time taken: 9.5609 Function value obtained: 0.3834 Current minimum: 0.3807 Iteration No: 201 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.13050460890044474, 'colsample_bytree': 0.40347546803645468, 'max_depth': 21, 'subsample': 0.87716599920352334, 'lambda': 66.89245320111776, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.22466 valid-rmse:5.24282 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.36559 valid-rmse:1.38977 [20] train-rmse:0.509614 valid-rmse:0.549245 [30] train-rmse:0.369419 valid-rmse:0.41689 [39] train-rmse:0.344301 valid-rmse:0.394425 Iteration No: 201 ended. Search finished for the next optimal point. Time taken: 8.1481 Function value obtained: 0.3944 Current minimum: 0.3807 Iteration No: 202 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 184, 'eta': 0.18560209144846218, 'colsample_bytree': 0.65325930858561931, 'max_depth': 92, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89233 valid-rmse:4.90984 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.720632 valid-rmse:0.752134 [20] train-rmse:0.349191 valid-rmse:0.397642 [30] train-rmse:0.332638 valid-rmse:0.382531 [39] train-rmse:0.32917 valid-rmse:0.380228 Iteration No: 202 ended. Search finished for the next optimal point. Time taken: 16.5703 Function value obtained: 0.3802 Current minimum: 0.3802 Iteration No: 203 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.72830955796510044, 'max_depth': 149, 'subsample': 1.0, 'lambda': 41.838630530098946, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21677 valid-rmse:4.23515 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.389178 valid-rmse:0.433547 [20] train-rmse:0.342441 valid-rmse:0.389332 [30] train-rmse:0.33521 valid-rmse:0.384096 [39] train-rmse:0.332468 valid-rmse:0.382636 Iteration No: 203 ended. Search finished for the next optimal point. Time taken: 15.7851 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 204 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 150, 'eta': 0.19286749685913307, 'colsample_bytree': 0.69949801675840639, 'max_depth': 87, 'subsample': 1.0, 'lambda': 28.044939966238676, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85249 valid-rmse:4.87038 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.693574 valid-rmse:0.726186 [20] train-rmse:0.35713 valid-rmse:0.403977 [30] train-rmse:0.336031 valid-rmse:0.384957 [39] train-rmse:0.330415 valid-rmse:0.381071 Iteration No: 204 ended. Search finished for the next optimal point. Time taken: 13.9777 Function value obtained: 0.3811 Current minimum: 0.3802 Iteration No: 205 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.20477597649920087, 'colsample_bytree': 0.75056174048054447, 'max_depth': 114, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.78195 valid-rmse:4.79934 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.603377 valid-rmse:0.638017 [20] train-rmse:0.35003 valid-rmse:0.396945 [30] train-rmse:0.339952 valid-rmse:0.387936 [39] train-rmse:0.336419 valid-rmse:0.385525 Iteration No: 205 ended. Search finished for the next optimal point. Time taken: 16.7965 Function value obtained: 0.3855 Current minimum: 0.3802 Iteration No: 206 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 29, 'eta': 0.14737294495149522, 'colsample_bytree': 0.9855365506867193, 'max_depth': 199, 'subsample': 0.84449283821536969, 'lambda': 79.449351067134444, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.12451 valid-rmse:5.14261 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.12627 valid-rmse:1.15243 [20] train-rmse:0.433015 valid-rmse:0.476719 [30] train-rmse:0.350071 valid-rmse:0.399191 [39] train-rmse:0.335683 valid-rmse:0.386819 Iteration No: 206 ended. Search finished for the next optimal point. Time taken: 15.0584 Function value obtained: 0.3868 Current minimum: 0.3802 Iteration No: 207 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 113, 'eta': 0.18045166256439032, 'colsample_bytree': 0.40000000000000002, 'max_depth': 65, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92342 valid-rmse:4.94096 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.763648 valid-rmse:0.794322 [20] train-rmse:0.354664 valid-rmse:0.404185 [30] train-rmse:0.333261 valid-rmse:0.385136 [39] train-rmse:0.328678 valid-rmse:0.38235 Iteration No: 207 ended. Search finished for the next optimal point. Time taken: 12.4399 Function value obtained: 0.3824 Current minimum: 0.3802 Iteration No: 208 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 260, 'eta': 0.19526590156767298, 'colsample_bytree': 0.93788332667983987, 'max_depth': 199, 'subsample': 0.87283124024256797, 'lambda': 88.049307940449353, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84027 valid-rmse:4.85844 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.690294 valid-rmse:0.723497 [20] train-rmse:0.367037 valid-rmse:0.41261 [30] train-rmse:0.344195 valid-rmse:0.390464 [39] train-rmse:0.337433 valid-rmse:0.384714 Iteration No: 208 ended. Search finished for the next optimal point. Time taken: 13.4813 Function value obtained: 0.3847 Current minimum: 0.3802 Iteration No: 209 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 130, 'eta': 0.18892363070798579, 'colsample_bytree': 0.6830931037379453, 'max_depth': 83, 'subsample': 1.0, 'lambda': 31.248657891791485, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87606 valid-rmse:4.89394 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.721221 valid-rmse:0.753193 [20] train-rmse:0.359792 valid-rmse:0.406961 [30] train-rmse:0.336337 valid-rmse:0.385756 [39] train-rmse:0.329981 valid-rmse:0.381109 Iteration No: 209 ended. Search finished for the next optimal point. Time taken: 13.4761 Function value obtained: 0.3811 Current minimum: 0.3802 Iteration No: 210 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.29999999999999999, 'colsample_bytree': 0.68293498212582815, 'max_depth': 144, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393825 valid-rmse:0.438594 [20] train-rmse:0.341949 valid-rmse:0.390323 [30] train-rmse:0.33262 valid-rmse:0.383328 [39] train-rmse:0.329055 valid-rmse:0.381705 Iteration No: 210 ended. Search finished for the next optimal point. Time taken: 16.0626 Function value obtained: 0.3817 Current minimum: 0.3802 Iteration No: 211 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.29168860621890702, 'colsample_bytree': 0.41538204206127621, 'max_depth': 197, 'subsample': 0.88324582246841143, 'lambda': 3.800616899641807, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.26264 valid-rmse:4.28035 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.388476 valid-rmse:0.432286 [20] train-rmse:0.344819 valid-rmse:0.390724 [30] train-rmse:0.338475 valid-rmse:0.385773 [39] train-rmse:0.335914 valid-rmse:0.38402 Iteration No: 211 ended. Search finished for the next optimal point. Time taken: 11.5285 Function value obtained: 0.3840 Current minimum: 0.3802 Iteration No: 212 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.1801776362977513, 'colsample_bytree': 0.56390550081796054, 'max_depth': 81, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92484 valid-rmse:4.94233 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.762059 valid-rmse:0.792353 [20] train-rmse:0.351324 valid-rmse:0.400215 [30] train-rmse:0.332051 valid-rmse:0.382695 [39] train-rmse:0.328639 valid-rmse:0.380626 Iteration No: 212 ended. Search finished for the next optimal point. Time taken: 15.9941 Function value obtained: 0.3806 Current minimum: 0.3802 Iteration No: 213 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 113, 'eta': 0.26770959766515939, 'colsample_bytree': 0.72439223578034218, 'max_depth': 128, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41059 valid-rmse:4.42887 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.431506 valid-rmse:0.474367 [20] train-rmse:0.344217 valid-rmse:0.3922 [30] train-rmse:0.333077 valid-rmse:0.383798 [39] train-rmse:0.328891 valid-rmse:0.381632 Iteration No: 213 ended. Search finished for the next optimal point. Time taken: 15.4591 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 214 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 284, 'eta': 0.14734661282174411, 'colsample_bytree': 0.9714192839280068, 'max_depth': 200, 'subsample': 0.96788878320952654, 'lambda': 27.566712596155831, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.12312 valid-rmse:5.1411 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.11863 valid-rmse:1.14427 [20] train-rmse:0.425971 valid-rmse:0.468659 [30] train-rmse:0.350655 valid-rmse:0.396968 [39] train-rmse:0.339498 valid-rmse:0.386567 Iteration No: 214 ended. Search finished for the next optimal point. Time taken: 13.5950 Function value obtained: 0.3866 Current minimum: 0.3802 Iteration No: 215 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 33, 'eta': 0.19428835025410501, 'colsample_bytree': 0.40116610184080559, 'max_depth': 37, 'subsample': 0.8093572519927027, 'lambda': 1.7560390479566748, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8424 valid-rmse:4.86024 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.672194 valid-rmse:0.705529 [20] train-rmse:0.347232 valid-rmse:0.400145 [30] train-rmse:0.330577 valid-rmse:0.38747 [39] train-rmse:0.327596 valid-rmse:0.386519 Iteration No: 215 ended. Search finished for the next optimal point. Time taken: 13.1627 Function value obtained: 0.3865 Current minimum: 0.3802 Iteration No: 216 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 161, 'eta': 0.17827158014770675, 'colsample_bytree': 0.7638100000551582, 'max_depth': 136, 'subsample': 1.0, 'lambda': 22.918034573224457, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93911 valid-rmse:4.95704 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.799527 valid-rmse:0.829703 [20] train-rmse:0.367501 valid-rmse:0.413601 [30] train-rmse:0.337705 valid-rmse:0.386242 [39] train-rmse:0.331471 valid-rmse:0.381609 Iteration No: 216 ended. Search finished for the next optimal point. Time taken: 14.3097 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 217 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.21593649295804146, 'colsample_bytree': 0.81595709022259588, 'max_depth': 110, 'subsample': 1.0, 'lambda': 52.475486428364924, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.71611 valid-rmse:4.73435 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.57225 valid-rmse:0.608661 [20] train-rmse:0.351877 valid-rmse:0.398593 [30] train-rmse:0.336189 valid-rmse:0.384598 [39] train-rmse:0.330986 valid-rmse:0.381073 Iteration No: 217 ended. Search finished for the next optimal point. Time taken: 15.8749 Function value obtained: 0.3811 Current minimum: 0.3802 Iteration No: 218 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 299, 'eta': 0.25243951009667265, 'colsample_bytree': 0.49358830433536388, 'max_depth': 61, 'subsample': 0.95292621141662537, 'lambda': 0.58633201487674991, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.49506 valid-rmse:4.51269 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.433012 valid-rmse:0.475394 [20] train-rmse:0.340142 valid-rmse:0.387293 [30] train-rmse:0.334538 valid-rmse:0.383026 [39] train-rmse:0.331679 valid-rmse:0.381248 Iteration No: 218 ended. Search finished for the next optimal point. Time taken: 14.1933 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 219 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 289, 'eta': 0.2973700033596911, 'colsample_bytree': 0.46417186419755618, 'max_depth': 21, 'subsample': 0.83850016248972259, 'lambda': 3.0890390819333082, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2287 valid-rmse:4.24646 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.381903 valid-rmse:0.426304 [20] train-rmse:0.343678 valid-rmse:0.389645 [30] train-rmse:0.338378 valid-rmse:0.385369 [39] train-rmse:0.336699 valid-rmse:0.384361 Iteration No: 219 ended. Search finished for the next optimal point. Time taken: 10.2601 Function value obtained: 0.3844 Current minimum: 0.3802 Iteration No: 220 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 50, 'eta': 0.10007196644510222, 'colsample_bytree': 0.44656957345514348, 'max_depth': 197, 'subsample': 0.82876469909536199, 'lambda': 4.2471810888214128, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.40381 valid-rmse:5.42171 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.92359 valid-rmse:1.944 [20] train-rmse:0.758499 valid-rmse:0.789723 [30] train-rmse:0.425218 valid-rmse:0.469235 [39] train-rmse:0.358796 valid-rmse:0.406719 Iteration No: 220 ended. Search finished for the next optimal point. Time taken: 10.2843 Function value obtained: 0.4067 Current minimum: 0.3802 Iteration No: 221 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 292, 'eta': 0.29736467829574431, 'colsample_bytree': 0.52074027433460457, 'max_depth': 90, 'subsample': 0.8338305296234555, 'lambda': 5.0896494342370264, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22909 valid-rmse:4.24697 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.381024 valid-rmse:0.425552 [20] train-rmse:0.341784 valid-rmse:0.388857 [30] train-rmse:0.335652 valid-rmse:0.384057 [39] train-rmse:0.332998 valid-rmse:0.382618 Iteration No: 221 ended. Search finished for the next optimal point. Time taken: 13.3854 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 222 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 122, 'eta': 0.29848358519058826, 'colsample_bytree': 0.40907804097796624, 'max_depth': 85, 'subsample': 0.82829763039488769, 'lambda': 49.724794512482333, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22683 valid-rmse:4.24549 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395822 valid-rmse:0.44039 [20] train-rmse:0.342521 valid-rmse:0.390425 [30] train-rmse:0.333882 valid-rmse:0.384456 [39] train-rmse:0.330578 valid-rmse:0.383016 Iteration No: 222 ended. Search finished for the next optimal point. Time taken: 12.2574 Function value obtained: 0.3830 Current minimum: 0.3802 Iteration No: 223 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 175, 'eta': 0.16904711043827614, 'colsample_bytree': 0.76061930465706462, 'max_depth': 152, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99114 valid-rmse:5.00868 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.86001 valid-rmse:0.888124 [20] train-rmse:0.362444 valid-rmse:0.410404 [30] train-rmse:0.334206 valid-rmse:0.384463 [39] train-rmse:0.330141 valid-rmse:0.38161 Iteration No: 223 ended. Search finished for the next optimal point. Time taken: 18.0232 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 224 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27013810046603071, 'colsample_bytree': 0.68762923260259146, 'max_depth': 110, 'subsample': 1.0, 'lambda': 29.429222643617553, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.39331 valid-rmse:4.41124 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.41855 valid-rmse:0.461364 [20] train-rmse:0.343319 valid-rmse:0.389926 [30] train-rmse:0.335671 valid-rmse:0.383715 [39] train-rmse:0.332289 valid-rmse:0.381647 Iteration No: 224 ended. Search finished for the next optimal point. Time taken: 15.6612 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 225 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 117, 'eta': 0.18020043347332892, 'colsample_bytree': 0.67662944242575307, 'max_depth': 88, 'subsample': 1.0, 'lambda': 30.511759752041495, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9279 valid-rmse:4.94578 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.785815 valid-rmse:0.81645 [20] train-rmse:0.366353 valid-rmse:0.413348 [30] train-rmse:0.337324 valid-rmse:0.386868 [39] train-rmse:0.330416 valid-rmse:0.3818 Iteration No: 225 ended. Search finished for the next optimal point. Time taken: 13.8052 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 226 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.17290012950599903, 'colsample_bytree': 0.79004190473527869, 'max_depth': 148, 'subsample': 1.0, 'lambda': 18.733468629642687, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9709 valid-rmse:4.98884 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.843882 valid-rmse:0.87313 [20] train-rmse:0.371077 valid-rmse:0.417364 [30] train-rmse:0.337575 valid-rmse:0.386409 [39] train-rmse:0.331175 valid-rmse:0.381336 Iteration No: 226 ended. Search finished for the next optimal point. Time taken: 15.0943 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 227 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 205, 'eta': 0.17098122914977876, 'colsample_bytree': 0.99043207834313041, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97957 valid-rmse:4.99713 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.842257 valid-rmse:0.870926 [20] train-rmse:0.361353 valid-rmse:0.409263 [30] train-rmse:0.335328 valid-rmse:0.38507 [39] train-rmse:0.331108 valid-rmse:0.381975 Iteration No: 227 ended. Search finished for the next optimal point. Time taken: 21.0403 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 228 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 289, 'eta': 0.15895613911458525, 'colsample_bytree': 0.96725793361425316, 'max_depth': 197, 'subsample': 0.82026486226368145, 'lambda': 4.3209785447381597, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.05269 valid-rmse:5.07059 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.974395 valid-rmse:1.00111 [20] train-rmse:0.39177 valid-rmse:0.436016 [30] train-rmse:0.347655 valid-rmse:0.393435 [39] train-rmse:0.341815 valid-rmse:0.387836 Iteration No: 228 ended. Search finished for the next optimal point. Time taken: 14.9561 Function value obtained: 0.3878 Current minimum: 0.3802 Iteration No: 229 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 125, 'eta': 0.18213731145323506, 'colsample_bytree': 0.67132892309345471, 'max_depth': 84, 'subsample': 1.0, 'lambda': 29.594670034760842, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91637 valid-rmse:4.93427 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.770389 valid-rmse:0.801307 [20] train-rmse:0.364778 valid-rmse:0.411695 [30] train-rmse:0.336817 valid-rmse:0.385858 [39] train-rmse:0.330376 valid-rmse:0.381243 Iteration No: 229 ended. Search finished for the next optimal point. Time taken: 14.0402 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 230 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 280, 'eta': 0.26659414809693982, 'colsample_bytree': 0.97904387146783767, 'max_depth': 50, 'subsample': 0.96920561964264385, 'lambda': 86.62265969985009, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41673 valid-rmse:4.43503 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.433545 valid-rmse:0.475927 [20] train-rmse:0.347251 valid-rmse:0.393036 [30] train-rmse:0.337872 valid-rmse:0.385207 [39] train-rmse:0.333867 valid-rmse:0.382508 Iteration No: 230 ended. Search finished for the next optimal point. Time taken: 17.8051 Function value obtained: 0.3825 Current minimum: 0.3802 Iteration No: 231 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 117, 'eta': 0.25195783472866218, 'colsample_bytree': 0.8014392712082703, 'max_depth': 102, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.50398 valid-rmse:4.52224 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.460696 valid-rmse:0.50227 [20] train-rmse:0.345443 valid-rmse:0.393315 [30] train-rmse:0.333473 valid-rmse:0.383513 [39] train-rmse:0.32928 valid-rmse:0.381148 Iteration No: 231 ended. Search finished for the next optimal point. Time taken: 16.3769 Function value obtained: 0.3811 Current minimum: 0.3802 Iteration No: 232 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26879728932632352, 'colsample_bytree': 0.72027268659123633, 'max_depth': 101, 'subsample': 1.0, 'lambda': 35.420296348923195, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40172 valid-rmse:4.41997 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422176 valid-rmse:0.46511 [20] train-rmse:0.344824 valid-rmse:0.391313 [30] train-rmse:0.336043 valid-rmse:0.384105 [39] train-rmse:0.33233 valid-rmse:0.381614 Iteration No: 232 ended. Search finished for the next optimal point. Time taken: 15.7296 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 233 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 90, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21093 valid-rmse:4.22823 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.380796 valid-rmse:0.42505 [20] train-rmse:0.346631 valid-rmse:0.393261 [30] train-rmse:0.340273 valid-rmse:0.388861 [39] train-rmse:0.337475 valid-rmse:0.387369 Iteration No: 233 ended. Search finished for the next optimal point. Time taken: 12.9364 Function value obtained: 0.3874 Current minimum: 0.3802 Iteration No: 234 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 273, 'eta': 0.29921929750542764, 'colsample_bytree': 0.99328464313475406, 'max_depth': 77, 'subsample': 0.97947105314113425, 'lambda': 89.590843581488187, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22343 valid-rmse:4.24179 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395327 valid-rmse:0.439501 [20] train-rmse:0.345753 valid-rmse:0.392152 [30] train-rmse:0.338353 valid-rmse:0.385758 [39] train-rmse:0.334782 valid-rmse:0.383063 Iteration No: 234 ended. Search finished for the next optimal point. Time taken: 17.5206 Function value obtained: 0.3831 Current minimum: 0.3802 Iteration No: 235 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 283, 'eta': 0.21252830764494676, 'colsample_bytree': 0.45583789364009386, 'max_depth': 198, 'subsample': 0.83256741514048849, 'lambda': 1.8856335667013298, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73338 valid-rmse:4.75114 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.57147 valid-rmse:0.607053 [20] train-rmse:0.348718 valid-rmse:0.394614 [30] train-rmse:0.338072 valid-rmse:0.384867 [39] train-rmse:0.334405 valid-rmse:0.382235 Iteration No: 235 ended. Search finished for the next optimal point. Time taken: 11.6544 Function value obtained: 0.3822 Current minimum: 0.3802 Iteration No: 236 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 288, 'eta': 0.2538230337122222, 'colsample_bytree': 0.96238223702208603, 'max_depth': 72, 'subsample': 0.82479464610821829, 'lambda': 88.928435440625279, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.49308 valid-rmse:4.51135 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.460217 valid-rmse:0.501311 [20] train-rmse:0.351617 valid-rmse:0.397624 [30] train-rmse:0.340212 valid-rmse:0.387167 [39] train-rmse:0.335536 valid-rmse:0.383459 Iteration No: 236 ended. Search finished for the next optimal point. Time taken: 15.3805 Function value obtained: 0.3835 Current minimum: 0.3802 Iteration No: 237 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 27, 'eta': 0.10078678936134355, 'colsample_bytree': 0.97411270106272752, 'max_depth': 185, 'subsample': 0.90093948988009154, 'lambda': 85.143610486984841, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.40132 valid-rmse:5.41939 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.91939 valid-rmse:1.9409 [20] train-rmse:0.767079 valid-rmse:0.799063 [30] train-rmse:0.439789 valid-rmse:0.483543 [39] train-rmse:0.366482 valid-rmse:0.414791 Iteration No: 237 ended. Search finished for the next optimal point. Time taken: 12.4614 Function value obtained: 0.4148 Current minimum: 0.3802 Iteration No: 238 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.25451947046684659, 'colsample_bytree': 1.0, 'max_depth': 99, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.48846 valid-rmse:4.50672 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.453867 valid-rmse:0.495406 [20] train-rmse:0.345988 valid-rmse:0.392827 [30] train-rmse:0.335478 valid-rmse:0.384424 [39] train-rmse:0.331058 valid-rmse:0.381756 Iteration No: 238 ended. Search finished for the next optimal point. Time taken: 19.1784 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 239 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.2188323925410387, 'colsample_bytree': 0.96355721978920006, 'max_depth': 192, 'subsample': 0.90237433639665665, 'lambda': 86.92029635079588, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.70033 valid-rmse:4.7185 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.563993 valid-rmse:0.601757 [20] train-rmse:0.349365 valid-rmse:0.399976 [30] train-rmse:0.331754 valid-rmse:0.386658 [39] train-rmse:0.325602 valid-rmse:0.38383 Iteration No: 239 ended. Search finished for the next optimal point. Time taken: 22.5885 Function value obtained: 0.3838 Current minimum: 0.3802 Iteration No: 240 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.2745783403504124, 'colsample_bytree': 0.79386438317912411, 'max_depth': 107, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.36976 valid-rmse:4.38809 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.42018 valid-rmse:0.463585 [20] train-rmse:0.342829 valid-rmse:0.390393 [30] train-rmse:0.333422 valid-rmse:0.383208 [39] train-rmse:0.329249 valid-rmse:0.380863 Iteration No: 240 ended. Search finished for the next optimal point. Time taken: 18.0200 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 241 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.27438966189325587, 'colsample_bytree': 0.79485703143429531, 'max_depth': 107, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37088 valid-rmse:4.3892 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.420464 valid-rmse:0.46385 [20] train-rmse:0.343656 valid-rmse:0.391711 [30] train-rmse:0.333757 valid-rmse:0.384099 [39] train-rmse:0.329714 valid-rmse:0.382055 Iteration No: 241 ended. Search finished for the next optimal point. Time taken: 17.4551 Function value obtained: 0.3821 Current minimum: 0.3802 Iteration No: 242 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24596142828984566, 'colsample_bytree': 1.0, 'max_depth': 102, 'subsample': 1.0, 'lambda': 52.066645646264867, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.53774 valid-rmse:4.55605 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.471196 valid-rmse:0.511909 [20] train-rmse:0.347643 valid-rmse:0.393622 [30] train-rmse:0.337933 valid-rmse:0.385238 [39] train-rmse:0.333601 valid-rmse:0.382144 Iteration No: 242 ended. Search finished for the next optimal point. Time taken: 18.5861 Function value obtained: 0.3821 Current minimum: 0.3802 Iteration No: 243 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.19223052508944036, 'colsample_bytree': 0.91396030543525242, 'max_depth': 200, 'subsample': 1.0, 'lambda': 38.632194726440815, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85656 valid-rmse:4.87476 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.699975 valid-rmse:0.732837 [20] train-rmse:0.35903 valid-rmse:0.405292 [30] train-rmse:0.337444 valid-rmse:0.385443 [39] train-rmse:0.331623 valid-rmse:0.3812 Iteration No: 243 ended. Search finished for the next optimal point. Time taken: 16.8820 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 244 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 94, 'eta': 0.17911679848614978, 'colsample_bytree': 0.64721171801998967, 'max_depth': 80, 'subsample': 1.0, 'lambda': 33.418158032746341, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93454 valid-rmse:4.95264 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.795625 valid-rmse:0.826013 [20] train-rmse:0.367879 valid-rmse:0.414652 [30] train-rmse:0.336191 valid-rmse:0.386254 [39] train-rmse:0.329242 valid-rmse:0.381152 Iteration No: 244 ended. Search finished for the next optimal point. Time taken: 14.6400 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 245 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26955083340408914, 'colsample_bytree': 0.76726047792958574, 'max_depth': 101, 'subsample': 1.0, 'lambda': 42.579682457678402, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.39753 valid-rmse:4.41583 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422447 valid-rmse:0.465132 [20] train-rmse:0.344286 valid-rmse:0.390404 [30] train-rmse:0.335822 valid-rmse:0.383532 [39] train-rmse:0.332571 valid-rmse:0.381592 Iteration No: 245 ended. Search finished for the next optimal point. Time taken: 16.4617 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 246 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.19072872875581381, 'colsample_bytree': 0.89571896761338032, 'max_depth': 200, 'subsample': 1.0, 'lambda': 37.249624440702007, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86544 valid-rmse:4.88364 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.709757 valid-rmse:0.742243 [20] train-rmse:0.360042 valid-rmse:0.406643 [30] train-rmse:0.337967 valid-rmse:0.386316 [39] train-rmse:0.332315 valid-rmse:0.381921 Iteration No: 246 ended. Search finished for the next optimal point. Time taken: 17.0749 Function value obtained: 0.3819 Current minimum: 0.3802 Iteration No: 247 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 153, 'eta': 0.17596262296176876, 'colsample_bytree': 0.48490687912864205, 'max_depth': 76, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95022 valid-rmse:4.96777 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.798849 valid-rmse:0.828405 [20] train-rmse:0.356589 valid-rmse:0.404628 [30] train-rmse:0.333789 valid-rmse:0.38392 [39] train-rmse:0.329565 valid-rmse:0.38084 Iteration No: 247 ended. Search finished for the next optimal point. Time taken: 15.2712 Function value obtained: 0.3808 Current minimum: 0.3802 Iteration No: 248 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 295, 'eta': 0.29640915904278908, 'colsample_bytree': 0.40752979098885111, 'max_depth': 78, 'subsample': 0.97681486515063309, 'lambda': 76.8618517157594, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.24004 valid-rmse:4.25852 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.403485 valid-rmse:0.447003 [20] train-rmse:0.349186 valid-rmse:0.395363 [30] train-rmse:0.338593 valid-rmse:0.386472 [39] train-rmse:0.334471 valid-rmse:0.383513 Iteration No: 248 ended. Search finished for the next optimal point. Time taken: 11.9917 Function value obtained: 0.3835 Current minimum: 0.3802 Iteration No: 249 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 237, 'eta': 0.14731563618298033, 'colsample_bytree': 0.40749661369885348, 'max_depth': 108, 'subsample': 0.87587883135671507, 'lambda': 3.487662646195107, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.12222 valid-rmse:5.14002 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.11323 valid-rmse:1.13827 [20] train-rmse:0.41897 valid-rmse:0.46196 [30] train-rmse:0.34675 valid-rmse:0.393745 [39] train-rmse:0.337803 valid-rmse:0.385448 Iteration No: 249 ended. Search finished for the next optimal point. Time taken: 11.0629 Function value obtained: 0.3854 Current minimum: 0.3802 Iteration No: 250 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.22751309040924877, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 42.545667093646856, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64698 valid-rmse:4.66524 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.524849 valid-rmse:0.563402 [20] train-rmse:0.349081 valid-rmse:0.395381 [30] train-rmse:0.337143 valid-rmse:0.384672 [39] train-rmse:0.333337 valid-rmse:0.382073 Iteration No: 250 ended. Search finished for the next optimal point. Time taken: 18.8030 Function value obtained: 0.3821 Current minimum: 0.3802 Iteration No: 251 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 147, 'eta': 0.23710991894947783, 'colsample_bytree': 1.0, 'max_depth': 97, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59173 valid-rmse:4.60996 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.499376 valid-rmse:0.538999 [20] train-rmse:0.34911 valid-rmse:0.396181 [30] train-rmse:0.336325 valid-rmse:0.385384 [39] train-rmse:0.33154 valid-rmse:0.382352 Iteration No: 251 ended. Search finished for the next optimal point. Time taken: 18.8929 Function value obtained: 0.3824 Current minimum: 0.3802 Iteration No: 252 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 31, 'eta': 0.19267907966612718, 'colsample_bytree': 0.40775136841246207, 'max_depth': 198, 'subsample': 0.80937510845532457, 'lambda': 83.351660704868806, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85602 valid-rmse:4.87428 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.710069 valid-rmse:0.743784 [20] train-rmse:0.36986 valid-rmse:0.417134 [30] train-rmse:0.340354 valid-rmse:0.390812 [39] train-rmse:0.332503 valid-rmse:0.385027 Iteration No: 252 ended. Search finished for the next optimal point. Time taken: 11.7559 Function value obtained: 0.3850 Current minimum: 0.3802 Iteration No: 253 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.13527676622351847, 'colsample_bytree': 0.46489932341444773, 'max_depth': 64, 'subsample': 0.86528245144532401, 'lambda': 0.78010012659426864, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.19346 valid-rmse:5.21126 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.27071 valid-rmse:1.2949 [20] train-rmse:0.449005 valid-rmse:0.497437 [30] train-rmse:0.334154 valid-rmse:0.396519 [39] train-rmse:0.322172 valid-rmse:0.387388 Iteration No: 253 ended. Search finished for the next optimal point. Time taken: 18.2425 Function value obtained: 0.3874 Current minimum: 0.3802 Iteration No: 254 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 168, 'eta': 0.29999999999999999, 'colsample_bytree': 0.72975637439576924, 'max_depth': 121, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393041 valid-rmse:0.43756 [20] train-rmse:0.342012 valid-rmse:0.389163 [30] train-rmse:0.33356 valid-rmse:0.383089 [39] train-rmse:0.329966 valid-rmse:0.381038 Iteration No: 254 ended. Search finished for the next optimal point. Time taken: 17.6149 Function value obtained: 0.3810 Current minimum: 0.3802 Iteration No: 255 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27401034650455713, 'colsample_bytree': 0.75901799182366703, 'max_depth': 101, 'subsample': 1.0, 'lambda': 45.620545100631638, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37119 valid-rmse:4.3895 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.417545 valid-rmse:0.460569 [20] train-rmse:0.344986 valid-rmse:0.391017 [30] train-rmse:0.336306 valid-rmse:0.384009 [39] train-rmse:0.333002 valid-rmse:0.381874 Iteration No: 255 ended. Search finished for the next optimal point. Time taken: 17.6222 Function value obtained: 0.3819 Current minimum: 0.3802 Iteration No: 256 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.17828198556673713, 'colsample_bytree': 0.56425923449859627, 'max_depth': 76, 'subsample': 1.0, 'lambda': 43.09470383602519, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9398 valid-rmse:4.95792 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.805229 valid-rmse:0.836098 [20] train-rmse:0.368727 valid-rmse:0.417916 [30] train-rmse:0.332248 valid-rmse:0.387664 [39] train-rmse:0.323553 valid-rmse:0.382715 Iteration No: 256 ended. Search finished for the next optimal point. Time taken: 16.9246 Function value obtained: 0.3827 Current minimum: 0.3802 Iteration No: 257 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.16663189857303182, 'colsample_bytree': 0.75393255759464206, 'max_depth': 151, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00553 valid-rmse:5.02308 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.882829 valid-rmse:0.910755 [20] train-rmse:0.365392 valid-rmse:0.413075 [30] train-rmse:0.334139 valid-rmse:0.384364 [39] train-rmse:0.329825 valid-rmse:0.381176 Iteration No: 257 ended. Search finished for the next optimal point. Time taken: 19.9132 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 258 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 159, 'eta': 0.17810384456441702, 'colsample_bytree': 0.5063132916013694, 'max_depth': 73, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93723 valid-rmse:4.95475 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.779651 valid-rmse:0.809855 [20] train-rmse:0.354266 valid-rmse:0.403017 [30] train-rmse:0.332566 valid-rmse:0.383428 [39] train-rmse:0.328815 valid-rmse:0.380929 Iteration No: 258 ended. Search finished for the next optimal point. Time taken: 16.0451 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 259 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.15950106625698457, 'colsample_bytree': 0.41523315288166884, 'max_depth': 8, 'subsample': 0.85014638637174667, 'lambda': 89.031256863802554, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.05294 valid-rmse:5.07115 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.993485 valid-rmse:1.02151 [20] train-rmse:0.419212 valid-rmse:0.461757 [30] train-rmse:0.364481 valid-rmse:0.408834 [39] train-rmse:0.356268 valid-rmse:0.400595 Iteration No: 259 ended. Search finished for the next optimal point. Time taken: 7.7544 Function value obtained: 0.4006 Current minimum: 0.3802 Iteration No: 260 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27628084532636732, 'colsample_bytree': 0.77125046050541424, 'max_depth': 104, 'subsample': 1.0, 'lambda': 47.866639494854958, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.35781 valid-rmse:4.37613 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.41294 valid-rmse:0.456535 [20] train-rmse:0.34482 valid-rmse:0.391909 [30] train-rmse:0.336297 valid-rmse:0.385059 [39] train-rmse:0.332749 valid-rmse:0.382885 Iteration No: 260 ended. Search finished for the next optimal point. Time taken: 17.3765 Function value obtained: 0.3829 Current minimum: 0.3802 Iteration No: 261 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'}
/Users/graham/anaconda/lib/python3.6/site-packages/skopt/optimizer/optimizer.py:366: UserWarning: The objective has been evaluated at this point before. warnings.warn("The objective has been evaluated "
[0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395799 valid-rmse:0.440293 [20] train-rmse:0.344577 valid-rmse:0.391066 [30] train-rmse:0.336463 valid-rmse:0.384766 [39] train-rmse:0.333151 valid-rmse:0.382692 Iteration No: 261 ended. Search finished for the next optimal point. Time taken: 20.0598 Function value obtained: 0.3827 Current minimum: 0.3802 Iteration No: 262 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 161, 'eta': 0.29999999999999999, 'colsample_bytree': 0.72126203324997684, 'max_depth': 123, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393097 valid-rmse:0.43807 [20] train-rmse:0.34162 valid-rmse:0.389406 [30] train-rmse:0.333119 valid-rmse:0.383117 [39] train-rmse:0.329223 valid-rmse:0.380932 Iteration No: 262 ended. Search finished for the next optimal point. Time taken: 17.7415 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 263 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24547093562790059, 'colsample_bytree': 0.4136818584724839, 'max_depth': 63, 'subsample': 0.80503230777204449, 'lambda': 1.8804013600942124, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.53724 valid-rmse:4.55498 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.459034 valid-rmse:0.499669 [20] train-rmse:0.350504 valid-rmse:0.395873 [30] train-rmse:0.34314 valid-rmse:0.389073 [39] train-rmse:0.340671 valid-rmse:0.387006 Iteration No: 263 ended. Search finished for the next optimal point. Time taken: 11.6957 Function value obtained: 0.3870 Current minimum: 0.3802 Iteration No: 264 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 139, 'eta': 0.27529662103003072, 'colsample_bytree': 0.77325728004975636, 'max_depth': 109, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3655 valid-rmse:4.38383 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419612 valid-rmse:0.462987 [20] train-rmse:0.34338 valid-rmse:0.390964 [30] train-rmse:0.333777 valid-rmse:0.383767 [39] train-rmse:0.329566 valid-rmse:0.38139 Iteration No: 264 ended. Search finished for the next optimal point. Time taken: 17.4179 Function value obtained: 0.3814 Current minimum: 0.3802 Iteration No: 265 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 20, 'eta': 0.18899395013982942, 'colsample_bytree': 0.40051739921381996, 'max_depth': 198, 'subsample': 0.82230591062890346, 'lambda': 23.06954124427622, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87545 valid-rmse:4.89344 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.723378 valid-rmse:0.755761 [20] train-rmse:0.362924 valid-rmse:0.41231 [30] train-rmse:0.334046 valid-rmse:0.388735 [39] train-rmse:0.326564 valid-rmse:0.384581 Iteration No: 265 ended. Search finished for the next optimal point. Time taken: 13.9069 Function value obtained: 0.3846 Current minimum: 0.3802 Iteration No: 266 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 38, 'eta': 0.299218879508866, 'colsample_bytree': 0.97450982440643474, 'max_depth': 199, 'subsample': 0.88726333614784381, 'lambda': 46.610310297171672, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2215 valid-rmse:4.23992 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.385013 valid-rmse:0.430958 [20] train-rmse:0.336115 valid-rmse:0.388907 [30] train-rmse:0.328892 valid-rmse:0.385633 [39] train-rmse:0.326384 valid-rmse:0.385886 Iteration No: 266 ended. Search finished for the next optimal point. Time taken: 30.9491 Function value obtained: 0.3859 Current minimum: 0.3802 Iteration No: 267 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.18637066628042792, 'colsample_bytree': 0.85363338030256564, 'max_depth': 200, 'subsample': 1.0, 'lambda': 32.842394218034428, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89121 valid-rmse:4.9094 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.739244 valid-rmse:0.77086 [20] train-rmse:0.362424 valid-rmse:0.408618 [30] train-rmse:0.337471 valid-rmse:0.38561 [39] train-rmse:0.331247 valid-rmse:0.381077 Iteration No: 267 ended. Search finished for the next optimal point. Time taken: 17.4438 Function value obtained: 0.3811 Current minimum: 0.3802 Iteration No: 268 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.18084659898162989, 'colsample_bytree': 0.65437781798586858, 'max_depth': 78, 'subsample': 1.0, 'lambda': 26.116060288051347, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92392 valid-rmse:4.94184 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.7798 valid-rmse:0.810392 [20] train-rmse:0.365086 valid-rmse:0.411386 [30] train-rmse:0.336441 valid-rmse:0.385437 [39] train-rmse:0.329903 valid-rmse:0.380535 Iteration No: 268 ended. Search finished for the next optimal point. Time taken: 14.8014 Function value obtained: 0.3805 Current minimum: 0.3802 Iteration No: 269 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.17103253041891384, 'colsample_bytree': 0.41742284160618581, 'max_depth': 98, 'subsample': 0.81182058819013436, 'lambda': 87.121886810753551, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98456 valid-rmse:5.00279 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.878788 valid-rmse:0.908763 [20] train-rmse:0.392394 valid-rmse:0.438072 [30] train-rmse:0.344499 valid-rmse:0.394518 [39] train-rmse:0.333837 valid-rmse:0.386439 Iteration No: 269 ended. Search finished for the next optimal point. Time taken: 12.7464 Function value obtained: 0.3864 Current minimum: 0.3802 Iteration No: 270 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 17, 'eta': 0.23004560987315317, 'colsample_bytree': 0.40084943546076884, 'max_depth': 21, 'subsample': 0.88516724466778496, 'lambda': 42.926920063445543, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.63253 valid-rmse:4.65091 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.521403 valid-rmse:0.560625 [20] train-rmse:0.348318 valid-rmse:0.398576 [30] train-rmse:0.331656 valid-rmse:0.386364 [39] train-rmse:0.327327 valid-rmse:0.384128 Iteration No: 270 ended. Search finished for the next optimal point. Time taken: 12.2402 Function value obtained: 0.3841 Current minimum: 0.3802 Iteration No: 271 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.2116179740422931, 'colsample_bytree': 0.79557334780006439, 'max_depth': 83, 'subsample': 1.0, 'lambda': 49.971011546584698, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.74188 valid-rmse:4.76007 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.592521 valid-rmse:0.628456 [20] train-rmse:0.352537 valid-rmse:0.399436 [30] train-rmse:0.336373 valid-rmse:0.385158 [39] train-rmse:0.331232 valid-rmse:0.381694 Iteration No: 271 ended. Search finished for the next optimal point. Time taken: 17.0396 Function value obtained: 0.3817 Current minimum: 0.3802 Iteration No: 272 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.18032208034182493, 'colsample_bytree': 0.40000000000000002, 'max_depth': 65, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92422 valid-rmse:4.94177 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.765362 valid-rmse:0.795883 [20] train-rmse:0.356023 valid-rmse:0.404674 [30] train-rmse:0.334393 valid-rmse:0.38519 [39] train-rmse:0.329677 valid-rmse:0.382192 Iteration No: 272 ended. Search finished for the next optimal point. Time taken: 14.3007 Function value obtained: 0.3822 Current minimum: 0.3802 Iteration No: 273 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.16808321913941648, 'colsample_bytree': 0.75360502941800722, 'max_depth': 154, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99689 valid-rmse:5.01444 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.869241 valid-rmse:0.897444 [20] train-rmse:0.363701 valid-rmse:0.41138 [30] train-rmse:0.334346 valid-rmse:0.384391 [39] train-rmse:0.330369 valid-rmse:0.381612 Iteration No: 273 ended. Search finished for the next optimal point. Time taken: 20.2744 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 274 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.29964034794683447, 'colsample_bytree': 0.45460160289912521, 'max_depth': 133, 'subsample': 0.98541629208216852, 'lambda': 8.337434688078206, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2159 valid-rmse:4.23379 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.376492 valid-rmse:0.428538 [20] train-rmse:0.330126 valid-rmse:0.394257 [30] train-rmse:0.326178 valid-rmse:0.393767 [39] train-rmse:0.325374 valid-rmse:0.393962 Iteration No: 274 ended. Search finished for the next optimal point. Time taken: 26.5076 Function value obtained: 0.3940 Current minimum: 0.3802 Iteration No: 275 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 185, 'eta': 0.17159788394006642, 'colsample_bytree': 0.85095795918634543, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97591 valid-rmse:4.99343 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.836168 valid-rmse:0.865083 [20] train-rmse:0.360157 valid-rmse:0.40838 [30] train-rmse:0.334322 valid-rmse:0.384439 [39] train-rmse:0.330055 valid-rmse:0.381277 Iteration No: 275 ended. Search finished for the next optimal point. Time taken: 21.8270 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 276 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.23469250462740465, 'colsample_bytree': 0.73269504445359601, 'max_depth': 94, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.60635 valid-rmse:4.62457 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.506018 valid-rmse:0.546233 [20] train-rmse:0.344959 valid-rmse:0.395708 [30] train-rmse:0.329948 valid-rmse:0.385378 [39] train-rmse:0.323657 valid-rmse:0.382578 Iteration No: 276 ended. Search finished for the next optimal point. Time taken: 21.6027 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 277 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.22705852579871061, 'colsample_bytree': 1.0, 'max_depth': 103, 'subsample': 1.0, 'lambda': 45.632411342105968, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64979 valid-rmse:4.66805 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.526986 valid-rmse:0.5652 [20] train-rmse:0.35021 valid-rmse:0.396174 [30] train-rmse:0.338443 valid-rmse:0.385781 [39] train-rmse:0.334139 valid-rmse:0.382554 Iteration No: 277 ended. Search finished for the next optimal point. Time taken: 20.0066 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 278 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 279, 'eta': 0.23207877544885816, 'colsample_bytree': 0.99603018687063938, 'max_depth': 194, 'subsample': 0.88688122234174749, 'lambda': 89.862931290740036, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62186 valid-rmse:4.64008 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.518801 valid-rmse:0.557632 [20] train-rmse:0.354155 valid-rmse:0.399828 [30] train-rmse:0.340821 valid-rmse:0.387293 [39] train-rmse:0.335648 valid-rmse:0.383101 Iteration No: 278 ended. Search finished for the next optimal point. Time taken: 18.1567 Function value obtained: 0.3831 Current minimum: 0.3802 Iteration No: 279 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 28, 'eta': 0.16230382917589836, 'colsample_bytree': 0.99658218974933799, 'max_depth': 196, 'subsample': 0.92747732154868778, 'lambda': 3.8313824740581386, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.03246 valid-rmse:5.05018 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.936233 valid-rmse:0.963931 [20] train-rmse:0.378338 valid-rmse:0.426121 [30] train-rmse:0.339525 valid-rmse:0.3897 [39] train-rmse:0.334704 valid-rmse:0.385607 Iteration No: 279 ended. Search finished for the next optimal point. Time taken: 24.4095 Function value obtained: 0.3856 Current minimum: 0.3802 Iteration No: 280 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.18391842178075646, 'colsample_bytree': 0.65870624880704576, 'max_depth': 74, 'subsample': 1.0, 'lambda': 29.467731528892656, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90577 valid-rmse:4.92367 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.756721 valid-rmse:0.787951 [20] train-rmse:0.363253 valid-rmse:0.410109 [30] train-rmse:0.336721 valid-rmse:0.38581 [39] train-rmse:0.330281 valid-rmse:0.38116 Iteration No: 280 ended. Search finished for the next optimal point. Time taken: 16.2492 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 281 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 137, 'eta': 0.1743220752734336, 'colsample_bytree': 0.80851126025584974, 'max_depth': 152, 'subsample': 1.0, 'lambda': 27.243299940396113, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96276 valid-rmse:4.98065 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.833481 valid-rmse:0.862983 [20] train-rmse:0.371702 valid-rmse:0.417937 [30] train-rmse:0.337721 valid-rmse:0.386626 [39] train-rmse:0.331283 valid-rmse:0.381518 Iteration No: 281 ended. Search finished for the next optimal point. Time taken: 17.7904 Function value obtained: 0.3815 Current minimum: 0.3802 Iteration No: 282 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.18390957734459443, 'colsample_bytree': 0.65857726294637886, 'max_depth': 74, 'subsample': 1.0, 'lambda': 28.556826169808662, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90578 valid-rmse:4.92368 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.756459 valid-rmse:0.787652 [20] train-rmse:0.362972 valid-rmse:0.409786 [30] train-rmse:0.336744 valid-rmse:0.385892 [39] train-rmse:0.330362 valid-rmse:0.381163 Iteration No: 282 ended. Search finished for the next optimal point. Time taken: 16.5091 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 283 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.18281258231726963, 'colsample_bytree': 0.65759092060262647, 'max_depth': 76, 'subsample': 1.0, 'lambda': 27.469711032761776, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91226 valid-rmse:4.93016 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.764883 valid-rmse:0.795644 [20] train-rmse:0.364045 valid-rmse:0.410626 [30] train-rmse:0.336898 valid-rmse:0.386011 [39] train-rmse:0.330552 valid-rmse:0.381421 Iteration No: 283 ended. Search finished for the next optimal point. Time taken: 16.1840 Function value obtained: 0.3814 Current minimum: 0.3802 Iteration No: 284 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.17978184138061332, 'colsample_bytree': 0.58085074783697954, 'max_depth': 79, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92792 valid-rmse:4.94555 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.767074 valid-rmse:0.797464 [20] train-rmse:0.353732 valid-rmse:0.40222 [30] train-rmse:0.334096 valid-rmse:0.384268 [39] train-rmse:0.330559 valid-rmse:0.381765 Iteration No: 284 ended. Search finished for the next optimal point. Time taken: 18.3478 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 285 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 278, 'eta': 0.29909599317897739, 'colsample_bytree': 0.43385959989417366, 'max_depth': 40, 'subsample': 0.98193927719103513, 'lambda': 2.0344747133635659, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21784 valid-rmse:4.23564 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.378051 valid-rmse:0.422971 [20] train-rmse:0.341011 valid-rmse:0.388261 [30] train-rmse:0.334703 valid-rmse:0.383898 [39] train-rmse:0.332529 valid-rmse:0.383085 Iteration No: 285 ended. Search finished for the next optimal point. Time taken: 15.2683 Function value obtained: 0.3831 Current minimum: 0.3802 Iteration No: 286 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.27869897873730665, 'colsample_bytree': 0.7972164000931129, 'max_depth': 109, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.34533 valid-rmse:4.36367 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.414451 valid-rmse:0.457903 [20] train-rmse:0.343694 valid-rmse:0.391338 [30] train-rmse:0.334274 valid-rmse:0.383963 [39] train-rmse:0.330135 valid-rmse:0.381705 Iteration No: 286 ended. Search finished for the next optimal point. Time taken: 19.6360 Function value obtained: 0.3817 Current minimum: 0.3802 Iteration No: 287 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 13, 'eta': 0.14081897350408309, 'colsample_bytree': 0.99439885186957999, 'max_depth': 161, 'subsample': 0.95964698382568669, 'lambda': 4.0558191319072527, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.16057 valid-rmse:5.17834 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.19441 valid-rmse:1.21902 [20] train-rmse:0.431204 valid-rmse:0.478878 [30] train-rmse:0.333866 valid-rmse:0.394018 [39] train-rmse:0.322036 valid-rmse:0.385824 Iteration No: 287 ended. Search finished for the next optimal point. Time taken: 28.9629 Function value obtained: 0.3858 Current minimum: 0.3802 Iteration No: 288 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 186, 'eta': 0.19767886288173961, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 42.219895220715031, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82428 valid-rmse:4.84249 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.665284 valid-rmse:0.698794 [20] train-rmse:0.356715 valid-rmse:0.403247 [30] train-rmse:0.337967 valid-rmse:0.386211 [39] train-rmse:0.331988 valid-rmse:0.381777 Iteration No: 288 ended. Search finished for the next optimal point. Time taken: 19.8616 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 289 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 49.339551786095974, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21682 valid-rmse:4.23526 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.388313 valid-rmse:0.432921 [20] train-rmse:0.342337 valid-rmse:0.389318 [30] train-rmse:0.335362 valid-rmse:0.384133 [39] train-rmse:0.33265 valid-rmse:0.382892 Iteration No: 289 ended. Search finished for the next optimal point. Time taken: 23.4869 Function value obtained: 0.3829 Current minimum: 0.3802 Iteration No: 290 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 192, 'eta': 0.1727002171424061, 'colsample_bytree': 0.85006191330023761, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96933 valid-rmse:4.9869 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.826252 valid-rmse:0.855256 [20] train-rmse:0.35912 valid-rmse:0.407196 [30] train-rmse:0.334529 valid-rmse:0.38446 [39] train-rmse:0.33044 valid-rmse:0.381499 Iteration No: 290 ended. Search finished for the next optimal point. Time taken: 21.8453 Function value obtained: 0.3815 Current minimum: 0.3802 Iteration No: 291 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 23, 'eta': 0.17219870215496458, 'colsample_bytree': 0.40227298096978426, 'max_depth': 194, 'subsample': 0.98684901649404244, 'lambda': 84.054320380166686, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97717 valid-rmse:4.99533 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.866264 valid-rmse:0.896127 [20] train-rmse:0.391702 valid-rmse:0.437221 [30] train-rmse:0.345816 valid-rmse:0.395375 [39] train-rmse:0.334023 valid-rmse:0.386163 Iteration No: 291 ended. Search finished for the next optimal point. Time taken: 13.1026 Function value obtained: 0.3862 Current minimum: 0.3802 Iteration No: 292 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.71560800191760832, 'max_depth': 112, 'subsample': 1.0, 'lambda': 53.785653828246168, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21739 valid-rmse:4.23573 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.392516 valid-rmse:0.43676 [20] train-rmse:0.343462 valid-rmse:0.390142 [30] train-rmse:0.335621 valid-rmse:0.384101 [39] train-rmse:0.332554 valid-rmse:0.382374 Iteration No: 292 ended. Search finished for the next optimal point. Time taken: 18.9651 Function value obtained: 0.3824 Current minimum: 0.3802 Iteration No: 293 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 153, 'eta': 0.23905162920003051, 'colsample_bytree': 1.0, 'max_depth': 99, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58021 valid-rmse:4.59844 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.492938 valid-rmse:0.532751 [20] train-rmse:0.348339 valid-rmse:0.395337 [30] train-rmse:0.335933 valid-rmse:0.385055 [39] train-rmse:0.331143 valid-rmse:0.381827 Iteration No: 293 ended. Search finished for the next optimal point. Time taken: 20.8212 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 294 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 187, 'eta': 0.19695784495493879, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 41.522423001389924, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82854 valid-rmse:4.84675 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.67006 valid-rmse:0.703392 [20] train-rmse:0.357868 valid-rmse:0.403938 [30] train-rmse:0.337733 valid-rmse:0.385745 [39] train-rmse:0.332241 valid-rmse:0.381758 Iteration No: 294 ended. Search finished for the next optimal point. Time taken: 19.7504 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 295 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.1802567446495616, 'colsample_bytree': 0.40000000000000002, 'max_depth': 65, 'subsample': 1.0, 'lambda': 34.542997760603399, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92783 valid-rmse:4.94592 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.792374 valid-rmse:0.823563 [20] train-rmse:0.370949 valid-rmse:0.420187 [30] train-rmse:0.334132 valid-rmse:0.389945 [39] train-rmse:0.32461 valid-rmse:0.384353 Iteration No: 295 ended. Search finished for the next optimal point. Time taken: 15.8647 Function value obtained: 0.3844 Current minimum: 0.3802 Iteration No: 296 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 187, 'eta': 0.17211434418472818, 'colsample_bytree': 0.8318261041823678, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97284 valid-rmse:4.9904 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.831945 valid-rmse:0.860724 [20] train-rmse:0.360023 valid-rmse:0.408133 [30] train-rmse:0.334668 valid-rmse:0.384998 [39] train-rmse:0.330585 valid-rmse:0.38198 Iteration No: 296 ended. Search finished for the next optimal point. Time taken: 22.5419 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 297 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.29999999999999999, 'colsample_bytree': 0.71149828691660255, 'max_depth': 129, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393323 valid-rmse:0.438187 [20] train-rmse:0.341475 valid-rmse:0.389662 [30] train-rmse:0.332857 valid-rmse:0.383391 [39] train-rmse:0.329526 valid-rmse:0.38169 Iteration No: 297 ended. Search finished for the next optimal point. Time taken: 18.4870 Function value obtained: 0.3817 Current minimum: 0.3802 Iteration No: 298 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 22, 'eta': 0.22821528693340506, 'colsample_bytree': 0.9584812857522117, 'max_depth': 200, 'subsample': 0.91946880932536679, 'lambda': 26.865833022067804, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64209 valid-rmse:4.6601 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.516597 valid-rmse:0.556092 [20] train-rmse:0.339081 valid-rmse:0.392307 [30] train-rmse:0.326755 valid-rmse:0.385056 [39] train-rmse:0.323102 valid-rmse:0.384789 Iteration No: 298 ended. Search finished for the next optimal point. Time taken: 30.2629 Function value obtained: 0.3848 Current minimum: 0.3802 Iteration No: 299 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 176, 'eta': 0.22038793360266393, 'colsample_bytree': 0.82898665048547671, 'max_depth': 200, 'subsample': 1.0, 'lambda': 59.989330395005631, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.69007 valid-rmse:4.70827 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.554481 valid-rmse:0.59155 [20] train-rmse:0.350817 valid-rmse:0.397522 [30] train-rmse:0.336367 valid-rmse:0.384908 [39] train-rmse:0.331452 valid-rmse:0.381555 Iteration No: 299 ended. Search finished for the next optimal point. Time taken: 18.1188 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 300 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 293, 'eta': 0.18890659550000055, 'colsample_bytree': 0.99285119891052387, 'max_depth': 12, 'subsample': 0.86025467316867077, 'lambda': 25.204483682640035, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87583 valid-rmse:4.89381 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.721574 valid-rmse:0.753465 [20] train-rmse:0.36617 valid-rmse:0.411464 [30] train-rmse:0.346989 valid-rmse:0.392452 [39] train-rmse:0.343 valid-rmse:0.388674 Iteration No: 300 ended. Search finished for the next optimal point. Time taken: 13.4081 Function value obtained: 0.3887 Current minimum: 0.3802 Iteration No: 301 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.20165153032205968, 'colsample_bytree': 0.71382767710190853, 'max_depth': 79, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80052 valid-rmse:4.81792 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.620809 valid-rmse:0.654603 [20] train-rmse:0.350226 valid-rmse:0.39723 [30] train-rmse:0.33941 valid-rmse:0.387341 [39] train-rmse:0.335895 valid-rmse:0.38488 Iteration No: 301 ended. Search finished for the next optimal point. Time taken: 18.9283 Function value obtained: 0.3849 Current minimum: 0.3802 Iteration No: 302 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.1824732692324178, 'colsample_bytree': 0.41768204397943709, 'max_depth': 178, 'subsample': 0.80077644652862523, 'lambda': 25.412005157436056, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91442 valid-rmse:4.93242 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.773278 valid-rmse:0.804056 [20] train-rmse:0.374928 valid-rmse:0.419507 [30] train-rmse:0.34624 valid-rmse:0.392136 [39] train-rmse:0.339562 valid-rmse:0.386135 Iteration No: 302 ended. Search finished for the next optimal point. Time taken: 12.0466 Function value obtained: 0.3861 Current minimum: 0.3802 Iteration No: 303 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 124, 'eta': 0.26522370162484998, 'colsample_bytree': 0.80551073966105891, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42532 valid-rmse:4.4436 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.434515 valid-rmse:0.477505 [20] train-rmse:0.344408 valid-rmse:0.392358 [30] train-rmse:0.333721 valid-rmse:0.384122 [39] train-rmse:0.329465 valid-rmse:0.381863 Iteration No: 303 ended. Search finished for the next optimal point. Time taken: 19.5196 Function value obtained: 0.3819 Current minimum: 0.3802 Iteration No: 304 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.25570323352651358, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 40.79145353167231, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.47944 valid-rmse:4.49776 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.445234 valid-rmse:0.487147 [20] train-rmse:0.345449 valid-rmse:0.391772 [30] train-rmse:0.336555 valid-rmse:0.384492 [39] train-rmse:0.332758 valid-rmse:0.381928 Iteration No: 304 ended. Search finished for the next optimal point. Time taken: 21.1187 Function value obtained: 0.3819 Current minimum: 0.3802 Iteration No: 305 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.17618480387567775, 'colsample_bytree': 0.81544951989522463, 'max_depth': 149, 'subsample': 1.0, 'lambda': 29.469349721527923, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95157 valid-rmse:4.96955 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.818124 valid-rmse:0.847965 [20] train-rmse:0.370238 valid-rmse:0.415959 [30] train-rmse:0.337358 valid-rmse:0.385636 [39] train-rmse:0.330666 valid-rmse:0.380521 Iteration No: 305 ended. Search finished for the next optimal point. Time taken: 18.0462 Function value obtained: 0.3805 Current minimum: 0.3802 Iteration No: 306 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 288, 'eta': 0.29840223571674251, 'colsample_bytree': 0.4467286696189634, 'max_depth': 194, 'subsample': 0.93296910780164211, 'lambda': 8.0553734735314784, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22345 valid-rmse:4.24137 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.383631 valid-rmse:0.428267 [20] train-rmse:0.342557 valid-rmse:0.389396 [30] train-rmse:0.33566 valid-rmse:0.384457 [39] train-rmse:0.332631 valid-rmse:0.382646 Iteration No: 306 ended. Search finished for the next optimal point. Time taken: 15.8525 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 307 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 22, 'eta': 0.26180887729746516, 'colsample_bytree': 0.95657110091960273, 'max_depth': 196, 'subsample': 0.93714013269393348, 'lambda': 89.207244860420658, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4454 valid-rmse:4.46366 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.440428 valid-rmse:0.483312 [20] train-rmse:0.348316 valid-rmse:0.395153 [30] train-rmse:0.340017 valid-rmse:0.387634 [39] train-rmse:0.336718 valid-rmse:0.385219 Iteration No: 307 ended. Search finished for the next optimal point. Time taken: 22.8755 Function value obtained: 0.3852 Current minimum: 0.3802 Iteration No: 308 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.17592193083848262, 'colsample_bytree': 0.81329037132115101, 'max_depth': 148, 'subsample': 1.0, 'lambda': 29.30723206990627, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95313 valid-rmse:4.97111 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.820431 valid-rmse:0.85015 [20] train-rmse:0.370159 valid-rmse:0.416214 [30] train-rmse:0.3377 valid-rmse:0.386277 [39] train-rmse:0.331173 valid-rmse:0.381274 Iteration No: 308 ended. Search finished for the next optimal point. Time taken: 18.0399 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 309 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 121, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395799 valid-rmse:0.440293 [20] train-rmse:0.344577 valid-rmse:0.391066 [30] train-rmse:0.336463 valid-rmse:0.384766 [39] train-rmse:0.333151 valid-rmse:0.382692 Iteration No: 309 ended. Search finished for the next optimal point. Time taken: 21.6270 Function value obtained: 0.3827 Current minimum: 0.3802 Iteration No: 310 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 238, 'eta': 0.10181079410228007, 'colsample_bytree': 0.40825799769983223, 'max_depth': 62, 'subsample': 0.87116222038897706, 'lambda': 0.34216805174001219, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.39291 valid-rmse:5.4107 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.88128 valid-rmse:1.90132 [20] train-rmse:0.729112 valid-rmse:0.760291 [30] train-rmse:0.412146 valid-rmse:0.455904 [39] train-rmse:0.353532 valid-rmse:0.400822 Iteration No: 310 ended. Search finished for the next optimal point. Time taken: 13.4433 Function value obtained: 0.4008 Current minimum: 0.3802 Iteration No: 311 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.21015923191911362, 'colsample_bytree': 0.84260415998074156, 'max_depth': 86, 'subsample': 1.0, 'lambda': 56.451133801900397, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.75057 valid-rmse:4.7688 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.599606 valid-rmse:0.634887 [20] train-rmse:0.352907 valid-rmse:0.399372 [30] train-rmse:0.336725 valid-rmse:0.384931 [39] train-rmse:0.331035 valid-rmse:0.381007 Iteration No: 311 ended. Search finished for the next optimal point. Time taken: 18.7952 Function value obtained: 0.3810 Current minimum: 0.3802 Iteration No: 312 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 158, 'eta': 0.1939988818021891, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.999195378642618, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84609 valid-rmse:4.86429 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.687756 valid-rmse:0.720751 [20] train-rmse:0.357445 valid-rmse:0.404059 [30] train-rmse:0.337229 valid-rmse:0.385754 [39] train-rmse:0.331344 valid-rmse:0.381641 Iteration No: 312 ended. Search finished for the next optimal point. Time taken: 20.8727 Function value obtained: 0.3816 Current minimum: 0.3802 Iteration No: 313 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 142, 'eta': 0.18714875883811594, 'colsample_bytree': 0.82849035840295437, 'max_depth': 200, 'subsample': 1.0, 'lambda': 34.947195758304616, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88665 valid-rmse:4.90484 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.734187 valid-rmse:0.766106 [20] train-rmse:0.362661 valid-rmse:0.409135 [30] train-rmse:0.337482 valid-rmse:0.385856 [39] train-rmse:0.331228 valid-rmse:0.381019 Iteration No: 313 ended. Search finished for the next optimal point. Time taken: 18.6843 Function value obtained: 0.3810 Current minimum: 0.3802 Iteration No: 314 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 285, 'eta': 0.231511684393784, 'colsample_bytree': 0.470347305257098, 'max_depth': 196, 'subsample': 0.9730134426142234, 'lambda': 86.740882245186626, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62528 valid-rmse:4.64355 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.523322 valid-rmse:0.561947 [20] train-rmse:0.359482 valid-rmse:0.404851 [30] train-rmse:0.347028 valid-rmse:0.393087 [39] train-rmse:0.342019 valid-rmse:0.388452 Iteration No: 314 ended. Search finished for the next optimal point. Time taken: 13.4148 Function value obtained: 0.3885 Current minimum: 0.3802 Iteration No: 315 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 291, 'eta': 0.2975225087190978, 'colsample_bytree': 0.97396859242510447, 'max_depth': 24, 'subsample': 0.8755435858311349, 'lambda': 86.658456685059861, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23375 valid-rmse:4.2521 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.397925 valid-rmse:0.441968 [20] train-rmse:0.347513 valid-rmse:0.392913 [30] train-rmse:0.339471 valid-rmse:0.386126 [39] train-rmse:0.336656 valid-rmse:0.384117 Iteration No: 315 ended. Search finished for the next optimal point. Time taken: 18.4970 Function value obtained: 0.3841 Current minimum: 0.3802 Iteration No: 316 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 270, 'eta': 0.22868472670205633, 'colsample_bytree': 0.99754492395225203, 'max_depth': 13, 'subsample': 0.95402718498033323, 'lambda': 80.15133823527789, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64153 valid-rmse:4.65975 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.52736 valid-rmse:0.565548 [20] train-rmse:0.355941 valid-rmse:0.401051 [30] train-rmse:0.345916 valid-rmse:0.391329 [39] train-rmse:0.342824 valid-rmse:0.388576 Iteration No: 316 ended. Search finished for the next optimal point. Time taken: 14.4202 Function value obtained: 0.3886 Current minimum: 0.3802 Iteration No: 317 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.24316996277929662, 'colsample_bytree': 0.41690973128310177, 'max_depth': 6, 'subsample': 0.89014365876205659, 'lambda': 6.3235985156777232, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55164 valid-rmse:4.56949 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.480741 valid-rmse:0.520265 [20] train-rmse:0.366927 valid-rmse:0.410609 [30] train-rmse:0.356619 valid-rmse:0.400926 [39] train-rmse:0.352274 valid-rmse:0.396693 Iteration No: 317 ended. Search finished for the next optimal point. Time taken: 9.9137 Function value obtained: 0.3967 Current minimum: 0.3802 Iteration No: 318 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.21617032168230782, 'colsample_bytree': 0.76263833217348242, 'max_depth': 88, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.71624 valid-rmse:4.73443 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.576676 valid-rmse:0.614271 [20] train-rmse:0.350174 valid-rmse:0.400872 [30] train-rmse:0.330799 valid-rmse:0.386035 [39] train-rmse:0.32423 valid-rmse:0.383059 Iteration No: 318 ended. Search finished for the next optimal point. Time taken: 23.3236 Function value obtained: 0.3831 Current minimum: 0.3802 Iteration No: 319 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 190, 'eta': 0.17663299821320599, 'colsample_bytree': 0.79355568245454455, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94583 valid-rmse:4.96339 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.791953 valid-rmse:0.821736 [20] train-rmse:0.355691 valid-rmse:0.403705 [30] train-rmse:0.334455 valid-rmse:0.384172 [39] train-rmse:0.33053 valid-rmse:0.381482 Iteration No: 319 ended. Search finished for the next optimal point. Time taken: 23.9228 Function value obtained: 0.3815 Current minimum: 0.3802 Iteration No: 320 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 95, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395799 valid-rmse:0.440293 [20] train-rmse:0.344577 valid-rmse:0.391066 [30] train-rmse:0.336463 valid-rmse:0.384766 [39] train-rmse:0.333151 valid-rmse:0.382692 Iteration No: 320 ended. Search finished for the next optimal point. Time taken: 24.0650 Function value obtained: 0.3827 Current minimum: 0.3802 Iteration No: 321 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.28483974958264663, 'colsample_bytree': 0.43575488419953218, 'max_depth': 199, 'subsample': 0.99682565243018584, 'lambda': 87.415944161777844, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.30898 valid-rmse:4.3274 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.410797 valid-rmse:0.456137 [20] train-rmse:0.340135 valid-rmse:0.392892 [30] train-rmse:0.327923 valid-rmse:0.385425 [39] train-rmse:0.323217 valid-rmse:0.383778 Iteration No: 321 ended. Search finished for the next optimal point. Time taken: 19.7409 Function value obtained: 0.3838 Current minimum: 0.3802 Iteration No: 322 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.17042305837284802, 'colsample_bytree': 0.6630481923333178, 'max_depth': 116, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98289 valid-rmse:5.00045 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.846875 valid-rmse:0.875379 [20] train-rmse:0.360502 valid-rmse:0.40859 [30] train-rmse:0.333484 valid-rmse:0.383786 [39] train-rmse:0.329438 valid-rmse:0.380892 Iteration No: 322 ended. Search finished for the next optimal point. Time taken: 22.3195 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 323 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.18906616491136852, 'colsample_bytree': 0.99245255925822617, 'max_depth': 56, 'subsample': 0.97473137583267822, 'lambda': 89.791801965099793, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87691 valid-rmse:4.89506 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.73022 valid-rmse:0.762418 [20] train-rmse:0.37076 valid-rmse:0.416158 [30] train-rmse:0.344982 valid-rmse:0.391344 [39] train-rmse:0.337623 valid-rmse:0.384779 Iteration No: 323 ended. Search finished for the next optimal point. Time taken: 19.4656 Function value obtained: 0.3848 Current minimum: 0.3802 Iteration No: 324 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 158, 'eta': 0.20315688870833901, 'colsample_bytree': 0.82527669440103102, 'max_depth': 83, 'subsample': 1.0, 'lambda': 49.574945186622308, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.79195 valid-rmse:4.81017 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.635974 valid-rmse:0.670205 [20] train-rmse:0.355821 valid-rmse:0.401916 [30] train-rmse:0.337069 valid-rmse:0.384967 [39] train-rmse:0.331241 valid-rmse:0.380882 Iteration No: 324 ended. Search finished for the next optimal point. Time taken: 20.5591 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 325 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.69816347830845937, 'max_depth': 100, 'subsample': 1.0, 'lambda': 51.250414025050631, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21722 valid-rmse:4.2356 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.390942 valid-rmse:0.435444 [20] train-rmse:0.343537 valid-rmse:0.390473 [30] train-rmse:0.335635 valid-rmse:0.384363 [39] train-rmse:0.33252 valid-rmse:0.382591 Iteration No: 325 ended. Search finished for the next optimal point. Time taken: 19.9326 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 326 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.23182334551835426, 'colsample_bytree': 1.0, 'max_depth': 89, 'subsample': 1.0, 'lambda': 51.172286348571255, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62168 valid-rmse:4.63996 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.511449 valid-rmse:0.550425 [20] train-rmse:0.349909 valid-rmse:0.396343 [30] train-rmse:0.338072 valid-rmse:0.38552 [39] train-rmse:0.333561 valid-rmse:0.382189 Iteration No: 326 ended. Search finished for the next optimal point. Time taken: 22.9839 Function value obtained: 0.3822 Current minimum: 0.3802 Iteration No: 327 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.17495125399685049, 'colsample_bytree': 0.62742877402078168, 'max_depth': 94, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95763 valid-rmse:4.9752 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.808487 valid-rmse:0.837755 [20] train-rmse:0.359898 valid-rmse:0.407628 [30] train-rmse:0.337193 valid-rmse:0.386682 [39] train-rmse:0.333188 valid-rmse:0.383751 Iteration No: 327 ended. Search finished for the next optimal point. Time taken: 20.4913 Function value obtained: 0.3838 Current minimum: 0.3802 Iteration No: 328 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.75064004613194979, 'max_depth': 200, 'subsample': 1.0, 'lambda': 43.731587968652086, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21686 valid-rmse:4.23524 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.388137 valid-rmse:0.432674 [20] train-rmse:0.342438 valid-rmse:0.389116 [30] train-rmse:0.335656 valid-rmse:0.384065 [39] train-rmse:0.332616 valid-rmse:0.382202 Iteration No: 328 ended. Search finished for the next optimal point. Time taken: 21.4606 Function value obtained: 0.3822 Current minimum: 0.3802 Iteration No: 329 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 265, 'eta': 0.1428701717857021, 'colsample_bytree': 0.40666991388062546, 'max_depth': 5, 'subsample': 0.91497370084568264, 'lambda': 0.30725279236161435, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.14838 valid-rmse:5.16613 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.17596 valid-rmse:1.20037 [20] train-rmse:0.456904 valid-rmse:0.497172 [30] train-rmse:0.37893 valid-rmse:0.421961 [39] train-rmse:0.36874 valid-rmse:0.411804 Iteration No: 329 ended. Search finished for the next optimal point. Time taken: 10.2646 Function value obtained: 0.4118 Current minimum: 0.3802 Iteration No: 330 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 159, 'eta': 0.2003053492007848, 'colsample_bytree': 0.74843087379648887, 'max_depth': 59, 'subsample': 1.0, 'lambda': 37.597233579819125, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80871 valid-rmse:4.82687 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.649255 valid-rmse:0.683477 [20] train-rmse:0.354809 valid-rmse:0.401798 [30] train-rmse:0.336301 valid-rmse:0.384979 [39] train-rmse:0.330771 valid-rmse:0.380764 Iteration No: 330 ended. Search finished for the next optimal point. Time taken: 18.5685 Function value obtained: 0.3808 Current minimum: 0.3802 Iteration No: 331 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.22142164333605738, 'colsample_bytree': 1.0, 'max_depth': 67, 'subsample': 1.0, 'lambda': 41.416812737078793, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.68314 valid-rmse:4.70139 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.547762 valid-rmse:0.585162 [20] train-rmse:0.35084 valid-rmse:0.396557 [30] train-rmse:0.338771 valid-rmse:0.385698 [39] train-rmse:0.334169 valid-rmse:0.382124 Iteration No: 331 ended. Search finished for the next optimal point. Time taken: 21.7931 Function value obtained: 0.3821 Current minimum: 0.3802 Iteration No: 332 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.19769010824583905, 'colsample_bytree': 0.72409240033500011, 'max_depth': 59, 'subsample': 1.0, 'lambda': 37.159581407860216, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82423 valid-rmse:4.84237 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.664982 valid-rmse:0.698704 [20] train-rmse:0.356283 valid-rmse:0.402963 [30] train-rmse:0.336179 valid-rmse:0.384811 [39] train-rmse:0.330819 valid-rmse:0.38099 Iteration No: 332 ended. Search finished for the next optimal point. Time taken: 20.0944 Function value obtained: 0.3810 Current minimum: 0.3802 Iteration No: 333 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.19732272033908166, 'colsample_bytree': 0.72295970831592005, 'max_depth': 59, 'subsample': 1.0, 'lambda': 36.968226706887293, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82641 valid-rmse:4.84454 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.666851 valid-rmse:0.700551 [20] train-rmse:0.355869 valid-rmse:0.402798 [30] train-rmse:0.335693 valid-rmse:0.384651 [39] train-rmse:0.330657 valid-rmse:0.381323 Iteration No: 333 ended. Search finished for the next optimal point. Time taken: 18.9932 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 334 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.19679965274940475, 'colsample_bytree': 0.72100669035287801, 'max_depth': 59, 'subsample': 1.0, 'lambda': 36.212845389909766, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8295 valid-rmse:4.84763 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.670618 valid-rmse:0.704146 [20] train-rmse:0.356704 valid-rmse:0.403796 [30] train-rmse:0.336122 valid-rmse:0.385296 [39] train-rmse:0.330445 valid-rmse:0.381178 Iteration No: 334 ended. Search finished for the next optimal point. Time taken: 19.5665 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 335 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 205, 'eta': 0.26319823701280642, 'colsample_bytree': 1.0, 'max_depth': 81, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43702 valid-rmse:4.45529 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.437935 valid-rmse:0.480309 [20] train-rmse:0.346087 valid-rmse:0.392999 [30] train-rmse:0.335957 valid-rmse:0.384928 [39] train-rmse:0.331815 valid-rmse:0.382029 Iteration No: 335 ended. Search finished for the next optimal point. Time taken: 24.5792 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 336 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 297, 'eta': 0.29837602499921967, 'colsample_bytree': 0.40756010449615176, 'max_depth': 50, 'subsample': 0.86250925263300071, 'lambda': 44.707098567231718, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22707 valid-rmse:4.24568 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.397661 valid-rmse:0.440865 [20] train-rmse:0.347782 valid-rmse:0.393609 [30] train-rmse:0.338406 valid-rmse:0.385796 [39] train-rmse:0.334645 valid-rmse:0.383249 Iteration No: 336 ended. Search finished for the next optimal point. Time taken: 15.9377 Function value obtained: 0.3832 Current minimum: 0.3802 Iteration No: 337 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.19154446537587619, 'colsample_bytree': 0.86416096823091471, 'max_depth': 173, 'subsample': 1.0, 'lambda': 37.83208036601345, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86061 valid-rmse:4.87881 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.704152 valid-rmse:0.736908 [20] train-rmse:0.359219 valid-rmse:0.4058 [30] train-rmse:0.33679 valid-rmse:0.385154 [39] train-rmse:0.331175 valid-rmse:0.381209 Iteration No: 337 ended. Search finished for the next optimal point. Time taken: 21.3176 Function value obtained: 0.3812 Current minimum: 0.3802 Iteration No: 338 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.18771639931699619, 'colsample_bytree': 0.59505726199549192, 'max_depth': 59, 'subsample': 1.0, 'lambda': 47.847169522066963, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88379 valid-rmse:4.90193 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.734222 valid-rmse:0.766895 [20] train-rmse:0.361368 valid-rmse:0.411678 [30] train-rmse:0.331615 valid-rmse:0.387895 [39] train-rmse:0.323569 valid-rmse:0.383509 Iteration No: 338 ended. Search finished for the next optimal point. Time taken: 20.9659 Function value obtained: 0.3835 Current minimum: 0.3802 Iteration No: 339 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.19282626627972926, 'colsample_bytree': 0.87860500438402223, 'max_depth': 172, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84917 valid-rmse:4.86669 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.672991 valid-rmse:0.705671 [20] train-rmse:0.350121 valid-rmse:0.397428 [30] train-rmse:0.337243 valid-rmse:0.385632 [39] train-rmse:0.333429 valid-rmse:0.382714 Iteration No: 339 ended. Search finished for the next optimal point. Time taken: 25.4630 Function value obtained: 0.3827 Current minimum: 0.3802 Iteration No: 340 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.1092912866438762, 'colsample_bytree': 0.41593113849936919, 'max_depth': 63, 'subsample': 0.97508186027892751, 'lambda': 77.898798480200142, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.35075 valid-rmse:5.36885 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.74254 valid-rmse:1.76475 [20] train-rmse:0.670313 valid-rmse:0.704515 [30] train-rmse:0.40953 valid-rmse:0.454585 [39] train-rmse:0.357877 valid-rmse:0.406808 Iteration No: 340 ended. Search finished for the next optimal point. Time taken: 13.8835 Function value obtained: 0.4068 Current minimum: 0.3802 Iteration No: 341 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 31, 'eta': 0.14246719620449888, 'colsample_bytree': 0.92204921521053995, 'max_depth': 104, 'subsample': 0.99716257761103777, 'lambda': 1.1455924189336966, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.15037 valid-rmse:5.16812 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.16685 valid-rmse:1.19145 [20] train-rmse:0.416826 valid-rmse:0.464877 [30] train-rmse:0.331523 valid-rmse:0.389368 [39] train-rmse:0.323035 valid-rmse:0.383956 Iteration No: 341 ended. Search finished for the next optimal point. Time taken: 34.3621 Function value obtained: 0.3840 Current minimum: 0.3802 Iteration No: 342 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 86, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395799 valid-rmse:0.440293 [20] train-rmse:0.344577 valid-rmse:0.391066 [30] train-rmse:0.336463 valid-rmse:0.384766 [39] train-rmse:0.333151 valid-rmse:0.382692 Iteration No: 342 ended. Search finished for the next optimal point. Time taken: 24.3048 Function value obtained: 0.3827 Current minimum: 0.3802 Iteration No: 343 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.19371515690746843, 'colsample_bytree': 0.73872362466896302, 'max_depth': 63, 'subsample': 1.0, 'lambda': 34.603102743074416, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84779 valid-rmse:4.86592 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.689734 valid-rmse:0.722595 [20] train-rmse:0.357779 valid-rmse:0.404368 [30] train-rmse:0.336636 valid-rmse:0.385105 [39] train-rmse:0.330685 valid-rmse:0.380937 Iteration No: 343 ended. Search finished for the next optimal point. Time taken: 20.4454 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 344 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 119, 'eta': 0.29999999999999999, 'colsample_bytree': 0.75352139324599554, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21921 valid-rmse:4.23757 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391653 valid-rmse:0.436952 [20] train-rmse:0.340052 valid-rmse:0.388832 [30] train-rmse:0.331679 valid-rmse:0.383224 [39] train-rmse:0.328252 valid-rmse:0.381947 Iteration No: 344 ended. Search finished for the next optimal point. Time taken: 24.3726 Function value obtained: 0.3819 Current minimum: 0.3802 Iteration No: 345 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 115, 'eta': 0.21541169361409296, 'colsample_bytree': 1.0, 'max_depth': 71, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.72049 valid-rmse:4.73867 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.579484 valid-rmse:0.615959 [20] train-rmse:0.353843 valid-rmse:0.400862 [30] train-rmse:0.33656 valid-rmse:0.385938 [39] train-rmse:0.330927 valid-rmse:0.382086 Iteration No: 345 ended. Search finished for the next optimal point. Time taken: 23.4484 Function value obtained: 0.3821 Current minimum: 0.3802 Iteration No: 346 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26037950141630567, 'colsample_bytree': 0.84067328393277729, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.074257486335981, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45159 valid-rmse:4.46993 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.438519 valid-rmse:0.48091 [20] train-rmse:0.34496 valid-rmse:0.391506 [30] train-rmse:0.336142 valid-rmse:0.384224 [39] train-rmse:0.332628 valid-rmse:0.381956 Iteration No: 346 ended. Search finished for the next optimal point. Time taken: 24.4814 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 347 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.21280168232691254, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 58.527487612944704, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73494 valid-rmse:4.75318 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.586698 valid-rmse:0.622751 [20] train-rmse:0.351853 valid-rmse:0.39844 [30] train-rmse:0.33596 valid-rmse:0.384383 [39] train-rmse:0.330566 valid-rmse:0.380755 Iteration No: 347 ended. Search finished for the next optimal point. Time taken: 24.0333 Function value obtained: 0.3808 Current minimum: 0.3802 Iteration No: 348 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26354791571244784, 'colsample_bytree': 1.0, 'max_depth': 82, 'subsample': 1.0, 'lambda': 61.343700764843831, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43388 valid-rmse:4.45216 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.435739 valid-rmse:0.478041 [20] train-rmse:0.346174 valid-rmse:0.392504 [30] train-rmse:0.336952 valid-rmse:0.385013 [39] train-rmse:0.333124 valid-rmse:0.382352 Iteration No: 348 ended. Search finished for the next optimal point. Time taken: 23.6217 Function value obtained: 0.3824 Current minimum: 0.3802 Iteration No: 349 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 18, 'eta': 0.25698655668767401, 'colsample_bytree': 0.45000875159165143, 'max_depth': 129, 'subsample': 0.80546818126680919, 'lambda': 55.603688986991521, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.47357 valid-rmse:4.49197 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.450742 valid-rmse:0.492996 [20] train-rmse:0.34292 valid-rmse:0.393326 [30] train-rmse:0.330071 valid-rmse:0.384952 [39] train-rmse:0.325402 valid-rmse:0.383332 Iteration No: 349 ended. Search finished for the next optimal point. Time taken: 20.1297 Function value obtained: 0.3833 Current minimum: 0.3802 Iteration No: 350 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 81, 'eta': 0.22880941072932592, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64098 valid-rmse:4.65918 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.525716 valid-rmse:0.564807 [20] train-rmse:0.348623 valid-rmse:0.397193 [30] train-rmse:0.334818 valid-rmse:0.385757 [39] train-rmse:0.329309 valid-rmse:0.382645 Iteration No: 350 ended. Search finished for the next optimal point. Time taken: 25.7787 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 351 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 142, 'eta': 0.19098192548932696, 'colsample_bytree': 0.82649545172878602, 'max_depth': 200, 'subsample': 1.0, 'lambda': 40.219170287285976, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86403 valid-rmse:4.88223 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.708198 valid-rmse:0.740614 [20] train-rmse:0.360269 valid-rmse:0.4068 [30] train-rmse:0.337023 valid-rmse:0.385579 [39] train-rmse:0.331334 valid-rmse:0.381435 Iteration No: 351 ended. Search finished for the next optimal point. Time taken: 21.6644 Function value obtained: 0.3814 Current minimum: 0.3802 Iteration No: 352 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 140, 'eta': 0.18805175691351578, 'colsample_bytree': 0.67953833477270553, 'max_depth': 68, 'subsample': 0.80000000000000004, 'lambda': 26.999615961094108, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88138 valid-rmse:4.8994 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.727844 valid-rmse:0.759461 [20] train-rmse:0.36237 valid-rmse:0.408407 [30] train-rmse:0.338582 valid-rmse:0.386334 [39] train-rmse:0.33283 valid-rmse:0.38219 Iteration No: 352 ended. Search finished for the next optimal point. Time taken: 18.6958 Function value obtained: 0.3822 Current minimum: 0.3802 Iteration No: 353 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 85, 'subsample': 1.0, 'lambda': 31.914025484116078, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21643 valid-rmse:4.23469 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.394058 valid-rmse:0.437656 [20] train-rmse:0.346785 valid-rmse:0.392944 [30] train-rmse:0.337832 valid-rmse:0.386054 [39] train-rmse:0.334158 valid-rmse:0.383736 Iteration No: 353 ended. Search finished for the next optimal point. Time taken: 16.1570 Function value obtained: 0.3837 Current minimum: 0.3802 Iteration No: 354 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.16669559756508795, 'colsample_bytree': 0.75212731673409672, 'max_depth': 157, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00515 valid-rmse:5.02271 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.881814 valid-rmse:0.909808 [20] train-rmse:0.36441 valid-rmse:0.412555 [30] train-rmse:0.333519 valid-rmse:0.384157 [39] train-rmse:0.329086 valid-rmse:0.380913 Iteration No: 354 ended. Search finished for the next optimal point. Time taken: 25.9195 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 355 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.19007918046578212, 'colsample_bytree': 0.82740057554817414, 'max_depth': 200, 'subsample': 1.0, 'lambda': 38.896211178643469, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86935 valid-rmse:4.88755 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.71414 valid-rmse:0.746649 [20] train-rmse:0.360789 valid-rmse:0.407771 [30] train-rmse:0.337606 valid-rmse:0.386724 [39] train-rmse:0.331389 valid-rmse:0.382004 Iteration No: 355 ended. Search finished for the next optimal point. Time taken: 23.1919 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 356 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26093573314429502, 'colsample_bytree': 0.8508886023641149, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.686887571970544, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44831 valid-rmse:4.46665 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.437475 valid-rmse:0.479805 [20] train-rmse:0.345578 valid-rmse:0.391643 [30] train-rmse:0.336494 valid-rmse:0.384282 [39] train-rmse:0.332937 valid-rmse:0.382015 Iteration No: 356 ended. Search finished for the next optimal point. Time taken: 23.4204 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 357 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 124, 'eta': 0.17874395923522621, 'colsample_bytree': 0.83627874717252049, 'max_depth': 168, 'subsample': 1.0, 'lambda': 30.511815342811289, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93638 valid-rmse:4.95437 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.796687 valid-rmse:0.827189 [20] train-rmse:0.36749 valid-rmse:0.414065 [30] train-rmse:0.337333 valid-rmse:0.386516 [39] train-rmse:0.330965 valid-rmse:0.381728 Iteration No: 357 ended. Search finished for the next optimal point. Time taken: 23.0512 Function value obtained: 0.3817 Current minimum: 0.3802 Iteration No: 358 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.26294929598134986, 'colsample_bytree': 0.81996051452709517, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43845 valid-rmse:4.45672 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.43839 valid-rmse:0.480792 [20] train-rmse:0.344809 valid-rmse:0.391971 [30] train-rmse:0.333782 valid-rmse:0.383123 [39] train-rmse:0.32943 valid-rmse:0.380824 Iteration No: 358 ended. Search finished for the next optimal point. Time taken: 24.4415 Function value obtained: 0.3808 Current minimum: 0.3802 Iteration No: 359 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.26253440691279117, 'colsample_bytree': 0.82064993643673279, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44091 valid-rmse:4.45918 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.439071 valid-rmse:0.481438 [20] train-rmse:0.344298 valid-rmse:0.391592 [30] train-rmse:0.333425 valid-rmse:0.382941 [39] train-rmse:0.329404 valid-rmse:0.380888 Iteration No: 359 ended. Search finished for the next optimal point. Time taken: 23.4601 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 360 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.16628311545936045, 'colsample_bytree': 0.74044092075366597, 'max_depth': 154, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.0076 valid-rmse:5.02517 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.885998 valid-rmse:0.913778 [20] train-rmse:0.364985 valid-rmse:0.412975 [30] train-rmse:0.333732 valid-rmse:0.38418 [39] train-rmse:0.329039 valid-rmse:0.380902 Iteration No: 360 ended. Search finished for the next optimal point. Time taken: 25.6855 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 361 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 29, 'eta': 0.21364098197476841, 'colsample_bytree': 0.40899257378885706, 'max_depth': 65, 'subsample': 0.8338999040436853, 'lambda': 3.9271698252610312, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.72715 valid-rmse:4.74485 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.568286 valid-rmse:0.60566 [20] train-rmse:0.339366 valid-rmse:0.393872 [30] train-rmse:0.327865 valid-rmse:0.38677 [39] train-rmse:0.325145 valid-rmse:0.386803 Iteration No: 361 ended. Search finished for the next optimal point. Time taken: 22.9009 Function value obtained: 0.3868 Current minimum: 0.3802 Iteration No: 362 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 298, 'eta': 0.23338481750275722, 'colsample_bytree': 0.99527492066038781, 'max_depth': 42, 'subsample': 0.80318067509822, 'lambda': 0.58353800448251891, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.60822 valid-rmse:4.62589 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.482585 valid-rmse:0.522158 [20] train-rmse:0.343275 valid-rmse:0.390253 [30] train-rmse:0.336684 valid-rmse:0.384606 [39] train-rmse:0.334437 valid-rmse:0.38315 Iteration No: 362 ended. Search finished for the next optimal point. Time taken: 25.7122 Function value obtained: 0.3831 Current minimum: 0.3802 Iteration No: 363 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.21982453586287526, 'colsample_bytree': 1.0, 'max_depth': 72, 'subsample': 1.0, 'lambda': 39.57098318235645, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.69256 valid-rmse:4.71081 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.554302 valid-rmse:0.591408 [20] train-rmse:0.351641 valid-rmse:0.397436 [30] train-rmse:0.339007 valid-rmse:0.385973 [39] train-rmse:0.334553 valid-rmse:0.382512 Iteration No: 363 ended. Search finished for the next optimal point. Time taken: 24.2621 Function value obtained: 0.3825 Current minimum: 0.3802 Iteration No: 364 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29550679934069757, 'colsample_bytree': 0.99268213765639313, 'max_depth': 91, 'subsample': 0.87279555390277619, 'lambda': 4.6808640294439643, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23943 valid-rmse:4.25733 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.381895 valid-rmse:0.426097 [20] train-rmse:0.344455 valid-rmse:0.390021 [30] train-rmse:0.34058 valid-rmse:0.386834 [39] train-rmse:0.338378 valid-rmse:0.384969 Iteration No: 364 ended. Search finished for the next optimal point. Time taken: 24.3233 Function value obtained: 0.3850 Current minimum: 0.3802 Iteration No: 365 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 185, 'eta': 0.21869069010042086, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 57.126126049976925, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.69991 valid-rmse:4.71816 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.561101 valid-rmse:0.597665 [20] train-rmse:0.351096 valid-rmse:0.39726 [30] train-rmse:0.336725 valid-rmse:0.384833 [39] train-rmse:0.331594 valid-rmse:0.38151 Iteration No: 365 ended. Search finished for the next optimal point. Time taken: 24.6431 Function value obtained: 0.3815 Current minimum: 0.3802 Iteration No: 366 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26767398844495094, 'colsample_bytree': 1.0, 'max_depth': 84, 'subsample': 1.0, 'lambda': 57.863259526707395, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40907 valid-rmse:4.42742 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.426991 valid-rmse:0.469621 [20] train-rmse:0.345443 valid-rmse:0.391725 [30] train-rmse:0.336966 valid-rmse:0.384749 [39] train-rmse:0.333422 valid-rmse:0.382447 Iteration No: 366 ended. Search finished for the next optimal point. Time taken: 25.7309 Function value obtained: 0.3824 Current minimum: 0.3802 Iteration No: 367 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.16608182255172685, 'colsample_bytree': 0.75089702982480333, 'max_depth': 157, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00881 valid-rmse:5.02637 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.887817 valid-rmse:0.915691 [20] train-rmse:0.364722 valid-rmse:0.41305 [30] train-rmse:0.333253 valid-rmse:0.384179 [39] train-rmse:0.329047 valid-rmse:0.381022 Iteration No: 367 ended. Search finished for the next optimal point. Time taken: 25.5998 Function value obtained: 0.3810 Current minimum: 0.3802 Iteration No: 368 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.19040117766167669, 'colsample_bytree': 0.75593582329731945, 'max_depth': 66, 'subsample': 1.0, 'lambda': 35.142276777384431, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8675 valid-rmse:4.88562 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.711308 valid-rmse:0.743626 [20] train-rmse:0.360324 valid-rmse:0.406953 [30] train-rmse:0.337202 valid-rmse:0.385734 [39] train-rmse:0.330987 valid-rmse:0.381085 Iteration No: 368 ended. Search finished for the next optimal point. Time taken: 21.3771 Function value obtained: 0.3811 Current minimum: 0.3802 Iteration No: 369 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 128, 'eta': 0.17819492755643929, 'colsample_bytree': 0.83719613654151703, 'max_depth': 170, 'subsample': 1.0, 'lambda': 29.371638393342764, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9396 valid-rmse:4.95759 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.801938 valid-rmse:0.832263 [20] train-rmse:0.368164 valid-rmse:0.414873 [30] train-rmse:0.337184 valid-rmse:0.386383 [39] train-rmse:0.330785 valid-rmse:0.381869 Iteration No: 369 ended. Search finished for the next optimal point. Time taken: 23.5949 Function value obtained: 0.3819 Current minimum: 0.3802 Iteration No: 370 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.19961042749660746, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80869 valid-rmse:4.82619 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.629682 valid-rmse:0.663521 [20] train-rmse:0.346803 valid-rmse:0.394275 [30] train-rmse:0.335744 valid-rmse:0.384036 [39] train-rmse:0.333081 valid-rmse:0.382394 Iteration No: 370 ended. Search finished for the next optimal point. Time taken: 29.2625 Function value obtained: 0.3824 Current minimum: 0.3802 Iteration No: 371 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 283, 'eta': 0.23131595190018558, 'colsample_bytree': 0.40790232003883031, 'max_depth': 199, 'subsample': 0.80032967110450004, 'lambda': 3.0035590141936166, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62184 valid-rmse:4.6396 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.50036 valid-rmse:0.538849 [20] train-rmse:0.348131 valid-rmse:0.393848 [30] train-rmse:0.338853 valid-rmse:0.385676 [39] train-rmse:0.335362 valid-rmse:0.383341 Iteration No: 371 ended. Search finished for the next optimal point. Time taken: 18.9987 Function value obtained: 0.3833 Current minimum: 0.3802 Iteration No: 372 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.25219870534630462, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.50222 valid-rmse:4.52046 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.459274 valid-rmse:0.500834 [20] train-rmse:0.345642 valid-rmse:0.393505 [30] train-rmse:0.33459 valid-rmse:0.384608 [39] train-rmse:0.330079 valid-rmse:0.381822 Iteration No: 372 ended. Search finished for the next optimal point. Time taken: 27.1622 Function value obtained: 0.3818 Current minimum: 0.3802 Iteration No: 373 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 161, 'eta': 0.20200974574771663, 'colsample_bytree': 1.0, 'max_depth': 71, 'subsample': 1.0, 'lambda': 61.697250089513204, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.79927 valid-rmse:4.81745 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.643463 valid-rmse:0.677745 [20] train-rmse:0.355972 valid-rmse:0.402379 [30] train-rmse:0.337355 valid-rmse:0.38567 [39] train-rmse:0.331673 valid-rmse:0.381523 Iteration No: 373 ended. Search finished for the next optimal point. Time taken: 23.9665 Function value obtained: 0.3815 Current minimum: 0.3802 Iteration No: 374 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.18622230113455554, 'colsample_bytree': 0.70327751455414322, 'max_depth': 70, 'subsample': 0.80000000000000004, 'lambda': 27.270661593067402, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89227 valid-rmse:4.91029 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.740808 valid-rmse:0.772111 [20] train-rmse:0.363278 valid-rmse:0.40932 [30] train-rmse:0.339056 valid-rmse:0.386677 [39] train-rmse:0.333692 valid-rmse:0.382624 Iteration No: 374 ended. Search finished for the next optimal point. Time taken: 20.6615 Function value obtained: 0.3826 Current minimum: 0.3802 Iteration No: 375 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.26158103376313968, 'colsample_bytree': 1.0, 'max_depth': 89, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4466 valid-rmse:4.46493 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.440669 valid-rmse:0.482927 [20] train-rmse:0.345279 valid-rmse:0.392385 [30] train-rmse:0.335257 valid-rmse:0.384199 [39] train-rmse:0.33093 valid-rmse:0.381403 Iteration No: 375 ended. Search finished for the next optimal point. Time taken: 25.7439 Function value obtained: 0.3814 Current minimum: 0.3802 Iteration No: 376 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.16539183350866371, 'colsample_bytree': 0.64986266623611944, 'max_depth': 123, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01356 valid-rmse:5.0312 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.895181 valid-rmse:0.92289 [20] train-rmse:0.366163 valid-rmse:0.414041 [30] train-rmse:0.333303 valid-rmse:0.383844 [39] train-rmse:0.32902 valid-rmse:0.380643 Iteration No: 376 ended. Search finished for the next optimal point. Time taken: 23.7651 Function value obtained: 0.3806 Current minimum: 0.3802 Iteration No: 377 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 150, 'eta': 0.16564594563075191, 'colsample_bytree': 0.73094339436414213, 'max_depth': 153, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01142 valid-rmse:5.02897 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.891972 valid-rmse:0.919755 [20] train-rmse:0.365528 valid-rmse:0.413735 [30] train-rmse:0.333196 valid-rmse:0.384046 [39] train-rmse:0.328744 valid-rmse:0.380937 Iteration No: 377 ended. Search finished for the next optimal point. Time taken: 27.1566 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 378 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 175, 'eta': 0.21926671047603263, 'colsample_bytree': 0.82066724033260918, 'max_depth': 200, 'subsample': 1.0, 'lambda': 58.363169371171054, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.69653 valid-rmse:4.71479 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.559146 valid-rmse:0.5962 [20] train-rmse:0.350942 valid-rmse:0.397519 [30] train-rmse:0.336275 valid-rmse:0.384437 [39] train-rmse:0.331649 valid-rmse:0.381367 Iteration No: 378 ended. Search finished for the next optimal point. Time taken: 23.1381 Function value obtained: 0.3814 Current minimum: 0.3802 Iteration No: 379 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 24, 'eta': 0.29318513371972366, 'colsample_bytree': 0.97647294293502962, 'max_depth': 66, 'subsample': 0.83797149267310811, 'lambda': 88.366152720332138, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.25963 valid-rmse:4.27798 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395362 valid-rmse:0.44108 [20] train-rmse:0.339076 valid-rmse:0.390533 [30] train-rmse:0.330088 valid-rmse:0.385257 [39] train-rmse:0.326699 valid-rmse:0.384566 Iteration No: 379 ended. Search finished for the next optimal point. Time taken: 33.6905 Function value obtained: 0.3846 Current minimum: 0.3802 Iteration No: 380 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.29894971061048559, 'colsample_bytree': 0.94185283675896603, 'max_depth': 196, 'subsample': 0.82132069343875935, 'lambda': 89.06896959804061, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2256 valid-rmse:4.24396 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.392345 valid-rmse:0.437587 [20] train-rmse:0.343672 valid-rmse:0.39148 [30] train-rmse:0.337006 valid-rmse:0.386655 [39] train-rmse:0.333868 valid-rmse:0.384691 Iteration No: 380 ended. Search finished for the next optimal point. Time taken: 32.0925 Function value obtained: 0.3847 Current minimum: 0.3802 Iteration No: 381 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.16636966868671674, 'colsample_bytree': 0.62840155615475601, 'max_depth': 113, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00772 valid-rmse:5.02536 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.88543 valid-rmse:0.913358 [20] train-rmse:0.364602 valid-rmse:0.412666 [30] train-rmse:0.332999 valid-rmse:0.383731 [39] train-rmse:0.328824 valid-rmse:0.380513 Iteration No: 381 ended. Search finished for the next optimal point. Time taken: 25.0842 Function value obtained: 0.3805 Current minimum: 0.3802 Iteration No: 382 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 142, 'eta': 0.16647991092852216, 'colsample_bytree': 0.62606368105677335, 'max_depth': 112, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00644 valid-rmse:5.024 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.88403 valid-rmse:0.912158 [20] train-rmse:0.363837 valid-rmse:0.412624 [30] train-rmse:0.332331 valid-rmse:0.383782 [39] train-rmse:0.328243 valid-rmse:0.380899 Iteration No: 382 ended. Search finished for the next optimal point. Time taken: 24.5086 Function value obtained: 0.3809 Current minimum: 0.3802 Iteration No: 383 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.26772393576102615, 'colsample_bytree': 1.0, 'max_depth': 90, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41017 valid-rmse:4.42851 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.429389 valid-rmse:0.472365 [20] train-rmse:0.344595 valid-rmse:0.391752 [30] train-rmse:0.334948 valid-rmse:0.384139 [39] train-rmse:0.330993 valid-rmse:0.381728 Iteration No: 383 ended. Search finished for the next optimal point. Time taken: 27.8732 Function value obtained: 0.3817 Current minimum: 0.3802 Iteration No: 384 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.1661961802048027, 'colsample_bytree': 0.75191778723668712, 'max_depth': 157, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00813 valid-rmse:5.02569 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.886626 valid-rmse:0.914577 [20] train-rmse:0.364972 valid-rmse:0.413342 [30] train-rmse:0.333598 valid-rmse:0.384321 [39] train-rmse:0.329296 valid-rmse:0.381293 Iteration No: 384 ended. Search finished for the next optimal point. Time taken: 27.7159 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 385 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 104, 'eta': 0.2134833732232225, 'colsample_bytree': 1.0, 'max_depth': 72, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73194 valid-rmse:4.75011 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.588766 valid-rmse:0.625361 [20] train-rmse:0.353539 valid-rmse:0.401387 [30] train-rmse:0.336111 valid-rmse:0.386343 [39] train-rmse:0.330386 valid-rmse:0.382316 Iteration No: 385 ended. Search finished for the next optimal point. Time taken: 26.1479 Function value obtained: 0.3823 Current minimum: 0.3802 Iteration No: 386 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.23847806577553826, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 34.156403430679916, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58149 valid-rmse:4.59978 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.485979 valid-rmse:0.525818 [20] train-rmse:0.346431 valid-rmse:0.392711 [30] train-rmse:0.336841 valid-rmse:0.384372 [39] train-rmse:0.332626 valid-rmse:0.381309 Iteration No: 386 ended. Search finished for the next optimal point. Time taken: 28.3924 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 387 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.20022856453772098, 'colsample_bytree': 0.79933903040639598, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80895 valid-rmse:4.82637 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.628781 valid-rmse:0.662483 [20] train-rmse:0.350529 valid-rmse:0.397358 [30] train-rmse:0.339334 valid-rmse:0.387333 [39] train-rmse:0.336076 valid-rmse:0.384944 Iteration No: 387 ended. Search finished for the next optimal point. Time taken: 26.3910 Function value obtained: 0.3849 Current minimum: 0.3802 Iteration No: 388 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 107, 'eta': 0.23074912090264563, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.62947 valid-rmse:4.64768 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.518794 valid-rmse:0.558093 [20] train-rmse:0.347933 valid-rmse:0.395885 [30] train-rmse:0.334625 valid-rmse:0.38467 [39] train-rmse:0.329773 valid-rmse:0.38198 Iteration No: 388 ended. Search finished for the next optimal point. Time taken: 27.8903 Function value obtained: 0.3820 Current minimum: 0.3802 Iteration No: 389 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.29999999999999999, 'colsample_bytree': 0.72807137815074618, 'max_depth': 105, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.39277 valid-rmse:0.437453 [20] train-rmse:0.342148 valid-rmse:0.38986 [30] train-rmse:0.332601 valid-rmse:0.382554 [39] train-rmse:0.329308 valid-rmse:0.381279 Iteration No: 389 ended. Search finished for the next optimal point. Time taken: 24.9671 Function value obtained: 0.3813 Current minimum: 0.3802 Iteration No: 390 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 139, 'eta': 0.16780756483772866, 'colsample_bytree': 0.59391311926474044, 'max_depth': 103, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99856 valid-rmse:5.01615 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.871455 valid-rmse:0.899751 [20] train-rmse:0.362322 valid-rmse:0.410631 [30] train-rmse:0.332139 valid-rmse:0.383233 [39] train-rmse:0.327921 valid-rmse:0.380148 Iteration No: 390 ended. Search finished for the next optimal point. Time taken: 25.0728 Function value obtained: 0.3801 Current minimum: 0.3801 Iteration No: 391 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.1679028798415664, 'colsample_bytree': 0.59548288139068761, 'max_depth': 102, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99864 valid-rmse:5.01623 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.87085 valid-rmse:0.8992 [20] train-rmse:0.362836 valid-rmse:0.411565 [30] train-rmse:0.332885 valid-rmse:0.384162 [39] train-rmse:0.328677 valid-rmse:0.381033 Iteration No: 391 ended. Search finished for the next optimal point. Time taken: 25.3393 Function value obtained: 0.3810 Current minimum: 0.3801 Iteration No: 392 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 141, 'eta': 0.1659178437782807, 'colsample_bytree': 0.62152491521350206, 'max_depth': 115, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00983 valid-rmse:5.02742 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.88983 valid-rmse:0.917776 [20] train-rmse:0.36495 valid-rmse:0.413164 [30] train-rmse:0.332699 valid-rmse:0.383597 [39] train-rmse:0.328265 valid-rmse:0.380294 Iteration No: 392 ended. Search finished for the next optimal point. Time taken: 25.2186 Function value obtained: 0.3803 Current minimum: 0.3801 Iteration No: 393 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.16860491657216023, 'colsample_bytree': 0.58288967041044881, 'max_depth': 99, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99386 valid-rmse:5.01138 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.863571 valid-rmse:0.892072 [20] train-rmse:0.361699 valid-rmse:0.410448 [30] train-rmse:0.332626 valid-rmse:0.38394 [39] train-rmse:0.32844 valid-rmse:0.38092 Iteration No: 393 ended. Search finished for the next optimal point. Time taken: 24.4352 Function value obtained: 0.3809 Current minimum: 0.3801 Iteration No: 394 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 107, 'eta': 0.17088254897104152, 'colsample_bytree': 0.40000000000000002, 'max_depth': 88, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98053 valid-rmse:4.99808 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.845914 valid-rmse:0.874922 [20] train-rmse:0.362963 valid-rmse:0.411933 [30] train-rmse:0.334055 valid-rmse:0.385889 [39] train-rmse:0.328847 valid-rmse:0.382279 Iteration No: 394 ended. Search finished for the next optimal point. Time taken: 21.0430 Function value obtained: 0.3823 Current minimum: 0.3801 Iteration No: 395 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 131, 'eta': 0.17530451183063647, 'colsample_bytree': 1.0, 'max_depth': 168, 'subsample': 1.0, 'lambda': 31.366773607853393, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95688 valid-rmse:4.97487 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.825529 valid-rmse:0.855412 [20] train-rmse:0.371179 valid-rmse:0.417523 [30] train-rmse:0.337818 valid-rmse:0.386802 [39] train-rmse:0.330945 valid-rmse:0.381493 Iteration No: 395 ended. Search finished for the next optimal point. Time taken: 26.6888 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 396 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 126, 'eta': 0.17169120121463213, 'colsample_bytree': 0.72075894144456121, 'max_depth': 99, 'subsample': 1.0, 'lambda': 22.780649453352634, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97825 valid-rmse:4.99617 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.855533 valid-rmse:0.884597 [20] train-rmse:0.373517 valid-rmse:0.419528 [30] train-rmse:0.337699 valid-rmse:0.386472 [39] train-rmse:0.330525 valid-rmse:0.380951 Iteration No: 396 ended. Search finished for the next optimal point. Time taken: 22.7556 Function value obtained: 0.3810 Current minimum: 0.3801 Iteration No: 397 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.26597452226306911, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42051 valid-rmse:4.4388 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.432852 valid-rmse:0.475518 [20] train-rmse:0.344137 valid-rmse:0.391593 [30] train-rmse:0.334865 valid-rmse:0.384708 [39] train-rmse:0.330382 valid-rmse:0.382107 Iteration No: 397 ended. Search finished for the next optimal point. Time taken: 28.8023 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 398 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 92, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.395799 valid-rmse:0.440293 [20] train-rmse:0.344577 valid-rmse:0.391066 [30] train-rmse:0.336463 valid-rmse:0.384766 [39] train-rmse:0.333151 valid-rmse:0.382692 Iteration No: 398 ended. Search finished for the next optimal point. Time taken: 27.4663 Function value obtained: 0.3827 Current minimum: 0.3801 Iteration No: 399 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.16419675118386787, 'colsample_bytree': 0.70622718819269859, 'max_depth': 142, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02007 valid-rmse:5.03764 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.906704 valid-rmse:0.934303 [20] train-rmse:0.367375 valid-rmse:0.415536 [30] train-rmse:0.333164 valid-rmse:0.38407 [39] train-rmse:0.328643 valid-rmse:0.380806 Iteration No: 399 ended. Search finished for the next optimal point. Time taken: 26.8765 Function value obtained: 0.3808 Current minimum: 0.3801 Iteration No: 400 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.16423133126449746, 'colsample_bytree': 0.70459268106623085, 'max_depth': 141, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01986 valid-rmse:5.03743 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.906402 valid-rmse:0.933912 [20] train-rmse:0.367142 valid-rmse:0.415021 [30] train-rmse:0.333327 valid-rmse:0.383854 [39] train-rmse:0.328806 valid-rmse:0.380382 Iteration No: 400 ended. Search finished for the next optimal point. Time taken: 26.8362 Function value obtained: 0.3804 Current minimum: 0.3801 Iteration No: 401 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 125, 'eta': 0.1711546996629762, 'colsample_bytree': 0.72059869536987775, 'max_depth': 102, 'subsample': 1.0, 'lambda': 22.085514291822726, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98141 valid-rmse:4.99933 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.860094 valid-rmse:0.889051 [20] train-rmse:0.37439 valid-rmse:0.420281 [30] train-rmse:0.337612 valid-rmse:0.386695 [39] train-rmse:0.330299 valid-rmse:0.381154 Iteration No: 401 ended. Search finished for the next optimal point. Time taken: 24.1736 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 402 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 146, 'eta': 0.16426719026384484, 'colsample_bytree': 0.71555838494192647, 'max_depth': 145, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01965 valid-rmse:5.03721 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.906333 valid-rmse:0.933894 [20] train-rmse:0.36725 valid-rmse:0.415441 [30] train-rmse:0.333278 valid-rmse:0.384124 [39] train-rmse:0.328916 valid-rmse:0.380665 Iteration No: 402 ended. Search finished for the next optimal point. Time taken: 26.9162 Function value obtained: 0.3807 Current minimum: 0.3801 Iteration No: 403 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.16574405923124921, 'colsample_bytree': 0.69954296662279769, 'max_depth': 137, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01134 valid-rmse:5.02885 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.891777 valid-rmse:0.91942 [20] train-rmse:0.367067 valid-rmse:0.414486 [30] train-rmse:0.334987 valid-rmse:0.384673 [39] train-rmse:0.330598 valid-rmse:0.381325 Iteration No: 403 ended. Search finished for the next optimal point. Time taken: 25.7706 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 404 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.18180970259596238, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 31.332384254589481, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91819 valid-rmse:4.93617 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.772401 valid-rmse:0.803433 [20] train-rmse:0.364527 valid-rmse:0.411652 [30] train-rmse:0.336844 valid-rmse:0.385911 [39] train-rmse:0.330667 valid-rmse:0.381539 Iteration No: 404 ended. Search finished for the next optimal point. Time taken: 27.4365 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 405 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 126, 'eta': 0.17110752952694158, 'colsample_bytree': 0.7189368021647059, 'max_depth': 103, 'subsample': 1.0, 'lambda': 21.553984504294682, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98167 valid-rmse:4.99959 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.86049 valid-rmse:0.889459 [20] train-rmse:0.37402 valid-rmse:0.419958 [30] train-rmse:0.337649 valid-rmse:0.386447 [39] train-rmse:0.331114 valid-rmse:0.381326 Iteration No: 405 ended. Search finished for the next optimal point. Time taken: 24.3879 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 406 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 260, 'eta': 0.16513893708749836, 'colsample_bytree': 0.98572648800737617, 'max_depth': 197, 'subsample': 0.80379383634721058, 'lambda': 88.221535137524327, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01935 valid-rmse:5.03747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.931035 valid-rmse:0.959483 [20] train-rmse:0.39959 valid-rmse:0.443742 [30] train-rmse:0.351502 valid-rmse:0.397078 [39] train-rmse:0.341663 valid-rmse:0.387875 Iteration No: 406 ended. Search finished for the next optimal point. Time taken: 22.9133 Function value obtained: 0.3879 Current minimum: 0.3801 Iteration No: 407 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 284, 'eta': 0.15620811884104668, 'colsample_bytree': 0.41165330741166622, 'max_depth': 153, 'subsample': 0.94502421558158256, 'lambda': 2.536979792341064, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.06905 valid-rmse:5.08688 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.0056 valid-rmse:1.03202 [20] train-rmse:0.395654 valid-rmse:0.440183 [30] train-rmse:0.344388 valid-rmse:0.391686 [39] train-rmse:0.337627 valid-rmse:0.385489 Iteration No: 407 ended. Search finished for the next optimal point. Time taken: 20.9488 Function value obtained: 0.3855 Current minimum: 0.3801 Iteration No: 408 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27558788284791524, 'colsample_bytree': 0.42739087645636903, 'max_depth': 59, 'subsample': 0.98479984383227481, 'lambda': 3.2191403746059599, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.35815 valid-rmse:4.37595 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.403823 valid-rmse:0.447392 [20] train-rmse:0.343131 valid-rmse:0.389745 [30] train-rmse:0.336164 valid-rmse:0.384399 [39] train-rmse:0.332966 valid-rmse:0.382437 Iteration No: 408 ended. Search finished for the next optimal point. Time taken: 21.8767 Function value obtained: 0.3824 Current minimum: 0.3801 Iteration No: 409 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.267094689246409, 'colsample_bytree': 0.77234787901997159, 'max_depth': 83, 'subsample': 1.0, 'lambda': 38.076626562481529, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41194 valid-rmse:4.43019 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.425211 valid-rmse:0.467843 [20] train-rmse:0.344645 valid-rmse:0.390628 [30] train-rmse:0.335931 valid-rmse:0.383439 [39] train-rmse:0.333046 valid-rmse:0.381841 Iteration No: 409 ended. Search finished for the next optimal point. Time taken: 26.2171 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 410 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.16629846010355664, 'colsample_bytree': 0.6496816036782932, 'max_depth': 113, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00753 valid-rmse:5.02509 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.885797 valid-rmse:0.91395 [20] train-rmse:0.364246 valid-rmse:0.412651 [30] train-rmse:0.332543 valid-rmse:0.38374 [39] train-rmse:0.328269 valid-rmse:0.380355 Iteration No: 410 ended. Search finished for the next optimal point. Time taken: 27.1172 Function value obtained: 0.3804 Current minimum: 0.3801 Iteration No: 411 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 153, 'eta': 0.17181358767279414, 'colsample_bytree': 0.62215733745707413, 'max_depth': 91, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97464 valid-rmse:4.99223 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.833864 valid-rmse:0.86287 [20] train-rmse:0.358297 valid-rmse:0.406901 [30] train-rmse:0.332351 valid-rmse:0.383095 [39] train-rmse:0.328324 valid-rmse:0.380132 Iteration No: 411 ended. Search finished for the next optimal point. Time taken: 27.1671 Function value obtained: 0.3801 Current minimum: 0.3801 Iteration No: 412 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.16729734037637933, 'colsample_bytree': 0.63976184352531473, 'max_depth': 107, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00157 valid-rmse:5.01913 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.876171 valid-rmse:0.904436 [20] train-rmse:0.363094 valid-rmse:0.411571 [30] train-rmse:0.332699 valid-rmse:0.383736 [39] train-rmse:0.328534 valid-rmse:0.380989 Iteration No: 412 ended. Search finished for the next optimal point. Time taken: 26.9305 Function value obtained: 0.3810 Current minimum: 0.3801 Iteration No: 413 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 110, 'eta': 0.26897297085079719, 'colsample_bytree': 0.74743136192359128, 'max_depth': 99, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4031 valid-rmse:4.42139 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.428399 valid-rmse:0.471544 [20] train-rmse:0.343566 valid-rmse:0.391873 [30] train-rmse:0.33275 valid-rmse:0.383517 [39] train-rmse:0.328478 valid-rmse:0.381241 Iteration No: 413 ended. Search finished for the next optimal point. Time taken: 26.5733 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 414 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 142, 'eta': 0.16396805611142048, 'colsample_bytree': 0.75355042143575379, 'max_depth': 151, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02142 valid-rmse:5.03898 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.908774 valid-rmse:0.936128 [20] train-rmse:0.367578 valid-rmse:0.415558 [30] train-rmse:0.333469 valid-rmse:0.384498 [39] train-rmse:0.329029 valid-rmse:0.381225 Iteration No: 414 ended. Search finished for the next optimal point. Time taken: 30.3050 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 415 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.29919697495891351, 'colsample_bytree': 0.43906012442889791, 'max_depth': 171, 'subsample': 0.94788091561517551, 'lambda': 5.8822785171420158, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21825 valid-rmse:4.23616 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.382233 valid-rmse:0.426871 [20] train-rmse:0.341735 valid-rmse:0.388448 [30] train-rmse:0.335446 valid-rmse:0.383846 [39] train-rmse:0.332384 valid-rmse:0.382081 Iteration No: 415 ended. Search finished for the next optimal point. Time taken: 22.3044 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 416 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 10, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 122, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21902 valid-rmse:4.23746 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.400406 valid-rmse:0.446545 [20] train-rmse:0.341659 valid-rmse:0.394715 [30] train-rmse:0.328864 valid-rmse:0.386971 [39] train-rmse:0.323873 valid-rmse:0.385011 Iteration No: 416 ended. Search finished for the next optimal point. Time taken: 24.7812 Function value obtained: 0.3850 Current minimum: 0.3801 Iteration No: 417 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.17628328064605325, 'colsample_bytree': 0.66682943365517433, 'max_depth': 87, 'subsample': 0.80000000000000004, 'lambda': 16.52177824581867, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95081 valid-rmse:4.96881 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.81487 valid-rmse:0.844525 [20] train-rmse:0.368232 valid-rmse:0.414552 [30] train-rmse:0.338482 valid-rmse:0.386974 [39] train-rmse:0.332802 valid-rmse:0.382924 Iteration No: 417 ended. Search finished for the next optimal point. Time taken: 23.8480 Function value obtained: 0.3829 Current minimum: 0.3801 Iteration No: 418 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 167, 'eta': 0.20642307528789117, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 55.856207093568976, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.77274 valid-rmse:4.79097 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.618894 valid-rmse:0.653852 [20] train-rmse:0.353942 valid-rmse:0.400633 [30] train-rmse:0.337043 valid-rmse:0.385365 [39] train-rmse:0.331865 valid-rmse:0.381933 Iteration No: 418 ended. Search finished for the next optimal point. Time taken: 28.4625 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 419 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.26598356129750178, 'colsample_bytree': 0.82580573651853706, 'max_depth': 95, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42046 valid-rmse:4.43873 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.433603 valid-rmse:0.476447 [20] train-rmse:0.34423 valid-rmse:0.392006 [30] train-rmse:0.333868 valid-rmse:0.38396 [39] train-rmse:0.329763 valid-rmse:0.381431 Iteration No: 419 ended. Search finished for the next optimal point. Time taken: 27.0683 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 420 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 28, 'eta': 0.18573447035146873, 'colsample_bytree': 0.42791897079264413, 'max_depth': 55, 'subsample': 0.99804022122747371, 'lambda': 84.430433271563288, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89681 valid-rmse:4.91502 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.757082 valid-rmse:0.788926 [20] train-rmse:0.377217 valid-rmse:0.422673 [30] train-rmse:0.347453 valid-rmse:0.394518 [39] train-rmse:0.341376 valid-rmse:0.38882 Iteration No: 420 ended. Search finished for the next optimal point. Time taken: 20.0052 Function value obtained: 0.3888 Current minimum: 0.3801 Iteration No: 421 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.27238787122600994, 'colsample_bytree': 0.77427325627824828, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38274 valid-rmse:4.40107 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422055 valid-rmse:0.465371 [20] train-rmse:0.34336 valid-rmse:0.39091 [30] train-rmse:0.333427 valid-rmse:0.383343 [39] train-rmse:0.329662 valid-rmse:0.381279 Iteration No: 421 ended. Search finished for the next optimal point. Time taken: 25.9948 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 422 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.16414090326798475, 'colsample_bytree': 0.68777662319042299, 'max_depth': 133, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02038 valid-rmse:5.03793 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.90722 valid-rmse:0.934667 [20] train-rmse:0.367053 valid-rmse:0.415041 [30] train-rmse:0.332907 valid-rmse:0.383739 [39] train-rmse:0.328205 valid-rmse:0.380186 Iteration No: 422 ended. Search finished for the next optimal point. Time taken: 27.6523 Function value obtained: 0.3802 Current minimum: 0.3801 Iteration No: 423 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 137, 'eta': 0.1640660900400947, 'colsample_bytree': 0.68844793384845215, 'max_depth': 134, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02083 valid-rmse:5.03839 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.908119 valid-rmse:0.935856 [20] train-rmse:0.367238 valid-rmse:0.415689 [30] train-rmse:0.332922 valid-rmse:0.384198 [39] train-rmse:0.328569 valid-rmse:0.380873 Iteration No: 423 ended. Search finished for the next optimal point. Time taken: 28.2365 Function value obtained: 0.3809 Current minimum: 0.3801 Iteration No: 424 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.26639389296324445, 'colsample_bytree': 1.0, 'max_depth': 94, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41806 valid-rmse:4.4364 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.432701 valid-rmse:0.475562 [20] train-rmse:0.344867 valid-rmse:0.391966 [30] train-rmse:0.335323 valid-rmse:0.38449 [39] train-rmse:0.331299 valid-rmse:0.382216 Iteration No: 424 ended. Search finished for the next optimal point. Time taken: 29.4318 Function value obtained: 0.3822 Current minimum: 0.3801 Iteration No: 425 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 123, 'eta': 0.17018093826933001, 'colsample_bytree': 0.73365917167291306, 'max_depth': 112, 'subsample': 1.0, 'lambda': 21.521047350972673, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98718 valid-rmse:5.0051 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.869097 valid-rmse:0.897899 [20] train-rmse:0.374955 valid-rmse:0.420959 [30] train-rmse:0.337134 valid-rmse:0.386359 [39] train-rmse:0.330479 valid-rmse:0.381249 Iteration No: 425 ended. Search finished for the next optimal point. Time taken: 25.4372 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 426 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 148, 'eta': 0.16458331799091719, 'colsample_bytree': 0.78844905527192721, 'max_depth': 158, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01837 valid-rmse:5.036 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.903175 valid-rmse:0.93071 [20] train-rmse:0.367508 valid-rmse:0.415615 [30] train-rmse:0.334443 valid-rmse:0.385019 [39] train-rmse:0.330009 valid-rmse:0.381836 Iteration No: 426 ended. Search finished for the next optimal point. Time taken: 31.0303 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 427 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 131, 'eta': 0.17324540235853669, 'colsample_bytree': 0.71249922706776314, 'max_depth': 92, 'subsample': 1.0, 'lambda': 21.452113553213756, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96894 valid-rmse:4.98686 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.841777 valid-rmse:0.871086 [20] train-rmse:0.371166 valid-rmse:0.417443 [30] train-rmse:0.337106 valid-rmse:0.386172 [39] train-rmse:0.330379 valid-rmse:0.381111 Iteration No: 427 ended. Search finished for the next optimal point. Time taken: 24.0335 Function value obtained: 0.3811 Current minimum: 0.3801 Iteration No: 428 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.29301893711934573, 'colsample_bytree': 0.42989997457249085, 'max_depth': 78, 'subsample': 0.99502305692535287, 'lambda': 88.917540907923168, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.26057 valid-rmse:4.27899 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.407014 valid-rmse:0.4505 [20] train-rmse:0.352816 valid-rmse:0.397997 [30] train-rmse:0.343438 valid-rmse:0.389758 [39] train-rmse:0.34036 valid-rmse:0.387178 Iteration No: 428 ended. Search finished for the next optimal point. Time taken: 20.0198 Function value obtained: 0.3872 Current minimum: 0.3801 Iteration No: 429 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.16772771302101852, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99896 valid-rmse:5.01658 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.872237 valid-rmse:0.900535 [20] train-rmse:0.363635 valid-rmse:0.412553 [30] train-rmse:0.334767 valid-rmse:0.385853 [39] train-rmse:0.330679 valid-rmse:0.383115 Iteration No: 429 ended. Search finished for the next optimal point. Time taken: 35.5655 Function value obtained: 0.3831 Current minimum: 0.3801 Iteration No: 430 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 153, 'eta': 0.16740859234577521, 'colsample_bytree': 0.65656407969002806, 'max_depth': 119, 'subsample': 0.80000000000000004, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00142 valid-rmse:5.01892 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.875476 valid-rmse:0.903643 [20] train-rmse:0.365014 valid-rmse:0.412664 [30] train-rmse:0.335123 valid-rmse:0.384842 [39] train-rmse:0.331142 valid-rmse:0.38212 Iteration No: 430 ended. Search finished for the next optimal point. Time taken: 26.4858 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 431 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.18622608733850748, 'colsample_bytree': 0.70705203698839858, 'max_depth': 71, 'subsample': 1.0, 'lambda': 21.666391390010407, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89173 valid-rmse:4.90967 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.738042 valid-rmse:0.769528 [20] train-rmse:0.360336 valid-rmse:0.407037 [30] train-rmse:0.336296 valid-rmse:0.385231 [39] train-rmse:0.330751 valid-rmse:0.381235 Iteration No: 431 ended. Search finished for the next optimal point. Time taken: 24.3622 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 432 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.18111650745224467, 'colsample_bytree': 0.70507007842959868, 'max_depth': 75, 'subsample': 1.0, 'lambda': 22.983115402235239, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92218 valid-rmse:4.9401 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.776384 valid-rmse:0.806802 [20] train-rmse:0.363784 valid-rmse:0.41002 [30] train-rmse:0.336254 valid-rmse:0.385148 [39] train-rmse:0.330092 valid-rmse:0.380477 Iteration No: 432 ended. Search finished for the next optimal point. Time taken: 23.9928 Function value obtained: 0.3805 Current minimum: 0.3801 Iteration No: 433 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27221377073952935, 'colsample_bytree': 0.79140068489900428, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.781397775808635, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3816 valid-rmse:4.39991 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419345 valid-rmse:0.462576 [20] train-rmse:0.344872 valid-rmse:0.391578 [30] train-rmse:0.336245 valid-rmse:0.384715 [39] train-rmse:0.332982 valid-rmse:0.382796 Iteration No: 433 ended. Search finished for the next optimal point. Time taken: 26.1851 Function value obtained: 0.3828 Current minimum: 0.3801 Iteration No: 434 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.17875152219555401, 'colsample_bytree': 0.62668560016871022, 'max_depth': 80, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93323 valid-rmse:4.95077 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.773963 valid-rmse:0.803995 [20] train-rmse:0.353025 valid-rmse:0.40138 [30] train-rmse:0.332757 valid-rmse:0.38288 [39] train-rmse:0.329223 valid-rmse:0.380744 Iteration No: 434 ended. Search finished for the next optimal point. Time taken: 27.8834 Function value obtained: 0.3807 Current minimum: 0.3801 Iteration No: 435 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.20790161302546178, 'colsample_bytree': 0.74737180153510874, 'max_depth': 73, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.76337 valid-rmse:4.78076 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.587418 valid-rmse:0.622488 [20] train-rmse:0.348656 valid-rmse:0.395646 [30] train-rmse:0.339564 valid-rmse:0.387665 [39] train-rmse:0.336363 valid-rmse:0.385406 Iteration No: 435 ended. Search finished for the next optimal point. Time taken: 27.1441 Function value obtained: 0.3854 Current minimum: 0.3801 Iteration No: 436 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 120, 'eta': 0.17024414669143839, 'colsample_bytree': 0.74074616658783587, 'max_depth': 112, 'subsample': 1.0, 'lambda': 23.226730928108587, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98687 valid-rmse:5.00479 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.869114 valid-rmse:0.897911 [20] train-rmse:0.375691 valid-rmse:0.421931 [30] train-rmse:0.337602 valid-rmse:0.386937 [39] train-rmse:0.330746 valid-rmse:0.381867 Iteration No: 436 ended. Search finished for the next optimal point. Time taken: 25.5562 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 437 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.19859694529992056, 'colsample_bytree': 1.0, 'max_depth': 75, 'subsample': 1.0, 'lambda': 59.020666346707259, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.81935 valid-rmse:4.83757 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.663016 valid-rmse:0.696633 [20] train-rmse:0.357882 valid-rmse:0.404584 [30] train-rmse:0.337743 valid-rmse:0.386304 [39] train-rmse:0.331947 valid-rmse:0.382156 Iteration No: 437 ended. Search finished for the next optimal point. Time taken: 28.3978 Function value obtained: 0.3822 Current minimum: 0.3801 Iteration No: 438 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 97, 'eta': 0.16892625714804302, 'colsample_bytree': 0.40000000000000002, 'max_depth': 95, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9922 valid-rmse:5.00974 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.864099 valid-rmse:0.892755 [20] train-rmse:0.364511 valid-rmse:0.413908 [30] train-rmse:0.333505 valid-rmse:0.385998 [39] train-rmse:0.328263 valid-rmse:0.382375 Iteration No: 438 ended. Search finished for the next optimal point. Time taken: 24.4185 Function value obtained: 0.3824 Current minimum: 0.3801 Iteration No: 439 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 103, 'eta': 0.22247390030027853, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.67858 valid-rmse:4.69677 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.54924 valid-rmse:0.587275 [20] train-rmse:0.350499 valid-rmse:0.398315 [30] train-rmse:0.33554 valid-rmse:0.385432 [39] train-rmse:0.329731 valid-rmse:0.381554 Iteration No: 439 ended. Search finished for the next optimal point. Time taken: 28.5414 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 440 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 161, 'eta': 0.18615056808105906, 'colsample_bytree': 1.0, 'max_depth': 165, 'subsample': 1.0, 'lambda': 39.32288688812293, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89273 valid-rmse:4.91092 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.741555 valid-rmse:0.773334 [20] train-rmse:0.362719 valid-rmse:0.409425 [30] train-rmse:0.337687 valid-rmse:0.386339 [39] train-rmse:0.331919 valid-rmse:0.382098 Iteration No: 440 ended. Search finished for the next optimal point. Time taken: 27.6578 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 441 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 115, 'eta': 0.16932399832500908, 'colsample_bytree': 0.78003665338077566, 'max_depth': 121, 'subsample': 1.0, 'lambda': 23.612497393692323, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99236 valid-rmse:5.01028 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.877844 valid-rmse:0.906775 [20] train-rmse:0.377056 valid-rmse:0.423281 [30] train-rmse:0.337677 valid-rmse:0.387071 [39] train-rmse:0.330555 valid-rmse:0.381469 Iteration No: 441 ended. Search finished for the next optimal point. Time taken: 25.6557 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 442 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 261, 'eta': 0.29835341800496401, 'colsample_bytree': 0.40936184191268099, 'max_depth': 198, 'subsample': 0.84753266521252046, 'lambda': 89.983457555774137, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22957 valid-rmse:4.24811 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.404406 valid-rmse:0.447769 [20] train-rmse:0.354415 valid-rmse:0.399549 [30] train-rmse:0.344627 valid-rmse:0.390412 [39] train-rmse:0.341384 valid-rmse:0.387711 Iteration No: 442 ended. Search finished for the next optimal point. Time taken: 20.2856 Function value obtained: 0.3877 Current minimum: 0.3801 Iteration No: 443 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 146, 'eta': 0.16484351070463613, 'colsample_bytree': 0.66587274964818721, 'max_depth': 122, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01621 valid-rmse:5.03377 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.900738 valid-rmse:0.928332 [20] train-rmse:0.366953 valid-rmse:0.414977 [30] train-rmse:0.333674 valid-rmse:0.384506 [39] train-rmse:0.329108 valid-rmse:0.381173 Iteration No: 443 ended. Search finished for the next optimal point. Time taken: 28.5580 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 444 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 12, 'eta': 0.18889666993680021, 'colsample_bytree': 0.62563546121706548, 'max_depth': 6, 'subsample': 0.91494535556211876, 'lambda': 89.821704899893589, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87836 valid-rmse:4.89662 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.733066 valid-rmse:0.76553 [20] train-rmse:0.384558 valid-rmse:0.428708 [30] train-rmse:0.363593 valid-rmse:0.408036 [39] train-rmse:0.356751 valid-rmse:0.401358 Iteration No: 444 ended. Search finished for the next optimal point. Time taken: 18.2582 Function value obtained: 0.4014 Current minimum: 0.3801 Iteration No: 445 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 167, 'eta': 0.19615420509879458, 'colsample_bytree': 1.0, 'max_depth': 42, 'subsample': 1.0, 'lambda': 28.987908096374611, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8328 valid-rmse:4.8508 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.672024 valid-rmse:0.705316 [20] train-rmse:0.354135 valid-rmse:0.401105 [30] train-rmse:0.335185 valid-rmse:0.384246 [39] train-rmse:0.330742 valid-rmse:0.381571 Iteration No: 445 ended. Search finished for the next optimal point. Time taken: 30.4776 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 446 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.19502913729096472, 'colsample_bytree': 1.0, 'max_depth': 68, 'subsample': 1.0, 'lambda': 54.234932070948325, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8404 valid-rmse:4.8586 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.683999 valid-rmse:0.717345 [20] train-rmse:0.359427 valid-rmse:0.406238 [30] train-rmse:0.337943 valid-rmse:0.386287 [39] train-rmse:0.33156 valid-rmse:0.381334 Iteration No: 446 ended. Search finished for the next optimal point. Time taken: 28.5583 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 447 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.19424540175093274, 'colsample_bytree': 1.0, 'max_depth': 44, 'subsample': 1.0, 'lambda': 28.60285175896523, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84413 valid-rmse:4.86213 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.683601 valid-rmse:0.71654 [20] train-rmse:0.356017 valid-rmse:0.402875 [30] train-rmse:0.336217 valid-rmse:0.38493 [39] train-rmse:0.33127 valid-rmse:0.381578 Iteration No: 447 ended. Search finished for the next optimal point. Time taken: 30.7991 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 448 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 183, 'eta': 0.22805068691420322, 'colsample_bytree': 1.0, 'max_depth': 73, 'subsample': 1.0, 'lambda': 65.91450666555356, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64474 valid-rmse:4.66296 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.525463 valid-rmse:0.563584 [20] train-rmse:0.349389 valid-rmse:0.395984 [30] train-rmse:0.336576 valid-rmse:0.384943 [39] train-rmse:0.3316 valid-rmse:0.381723 Iteration No: 448 ended. Search finished for the next optimal point. Time taken: 29.2340 Function value obtained: 0.3817 Current minimum: 0.3801 Iteration No: 449 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 120, 'eta': 0.17771786193629951, 'colsample_bytree': 0.40000000000000002, 'max_depth': 70, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93974 valid-rmse:4.95727 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.786471 valid-rmse:0.81648 [20] train-rmse:0.357815 valid-rmse:0.406656 [30] train-rmse:0.334585 valid-rmse:0.385722 [39] train-rmse:0.32979 valid-rmse:0.382623 Iteration No: 449 ended. Search finished for the next optimal point. Time taken: 25.6133 Function value obtained: 0.3826 Current minimum: 0.3801 Iteration No: 450 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 147, 'eta': 0.19057953623621204, 'colsample_bytree': 1.0, 'max_depth': 68, 'subsample': 1.0, 'lambda': 52.413223345280961, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86679 valid-rmse:4.88499 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.713008 valid-rmse:0.74556 [20] train-rmse:0.361015 valid-rmse:0.407765 [30] train-rmse:0.337698 valid-rmse:0.386482 [39] train-rmse:0.332002 valid-rmse:0.382282 Iteration No: 450 ended. Search finished for the next optimal point. Time taken: 29.8630 Function value obtained: 0.3823 Current minimum: 0.3801 Iteration No: 451 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 164, 'eta': 0.21029560215577309, 'colsample_bytree': 1.0, 'max_depth': 169, 'subsample': 1.0, 'lambda': 61.797249461387338, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.75006 valid-rmse:4.76825 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.599721 valid-rmse:0.635381 [20] train-rmse:0.353617 valid-rmse:0.400086 [30] train-rmse:0.336924 valid-rmse:0.385043 [39] train-rmse:0.331478 valid-rmse:0.381284 Iteration No: 451 ended. Search finished for the next optimal point. Time taken: 30.3141 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 452 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 161, 'eta': 0.1932875895932738, 'colsample_bytree': 1.0, 'max_depth': 45, 'subsample': 1.0, 'lambda': 28.296518804616181, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84981 valid-rmse:4.86782 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.689737 valid-rmse:0.722559 [20] train-rmse:0.355989 valid-rmse:0.402791 [30] train-rmse:0.335997 valid-rmse:0.385027 [39] train-rmse:0.330886 valid-rmse:0.381475 Iteration No: 452 ended. Search finished for the next optimal point. Time taken: 30.3233 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 453 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 16, 'eta': 0.10326379540776304, 'colsample_bytree': 0.68401629987378976, 'max_depth': 120, 'subsample': 0.97893298710598708, 'lambda': 4.4607633640444355, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.38466 valid-rmse:5.40249 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.8515 valid-rmse:1.87212 [20] train-rmse:0.713675 valid-rmse:0.746789 [30] train-rmse:0.403854 valid-rmse:0.453166 [39] train-rmse:0.340534 valid-rmse:0.397933 Iteration No: 453 ended. Search finished for the next optimal point. Time taken: 27.5343 Function value obtained: 0.3979 Current minimum: 0.3801 Iteration No: 454 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 153, 'eta': 0.19001321848999808, 'colsample_bytree': 1.0, 'max_depth': 46, 'subsample': 1.0, 'lambda': 27.918025102731281, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86927 valid-rmse:4.88727 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.711647 valid-rmse:0.743728 [20] train-rmse:0.358202 valid-rmse:0.404763 [30] train-rmse:0.336225 valid-rmse:0.385165 [39] train-rmse:0.330779 valid-rmse:0.381187 Iteration No: 454 ended. Search finished for the next optimal point. Time taken: 29.9011 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 455 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.18958740845818636, 'colsample_bytree': 1.0, 'max_depth': 47, 'subsample': 1.0, 'lambda': 28.114329847044633, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87181 valid-rmse:4.88981 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.714256 valid-rmse:0.746567 [20] train-rmse:0.358047 valid-rmse:0.404918 [30] train-rmse:0.336215 valid-rmse:0.385228 [39] train-rmse:0.330944 valid-rmse:0.381506 Iteration No: 455 ended. Search finished for the next optimal point. Time taken: 30.0587 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 456 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26798054362216628, 'colsample_bytree': 1.0, 'max_depth': 59, 'subsample': 1.0, 'lambda': 42.825599332187522, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4066 valid-rmse:4.42496 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.423316 valid-rmse:0.466281 [20] train-rmse:0.34426 valid-rmse:0.390351 [30] train-rmse:0.335919 valid-rmse:0.38408 [39] train-rmse:0.332314 valid-rmse:0.38181 Iteration No: 456 ended. Search finished for the next optimal point. Time taken: 31.4897 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 457 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.18808134567183216, 'colsample_bytree': 1.0, 'max_depth': 48, 'subsample': 1.0, 'lambda': 27.871446357234969, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88075 valid-rmse:4.89874 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.725149 valid-rmse:0.756962 [20] train-rmse:0.359267 valid-rmse:0.405616 [30] train-rmse:0.336404 valid-rmse:0.38482 [39] train-rmse:0.330503 valid-rmse:0.380751 Iteration No: 457 ended. Search finished for the next optimal point. Time taken: 29.8325 Function value obtained: 0.3808 Current minimum: 0.3801 Iteration No: 458 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.18883009588859867, 'colsample_bytree': 1.0, 'max_depth': 66, 'subsample': 1.0, 'lambda': 51.237172715733941, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87715 valid-rmse:4.89535 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.724229 valid-rmse:0.756467 [20] train-rmse:0.362729 valid-rmse:0.409251 [30] train-rmse:0.338302 valid-rmse:0.386616 [39] train-rmse:0.332055 valid-rmse:0.381881 Iteration No: 458 ended. Search finished for the next optimal point. Time taken: 29.7225 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 459 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.2380432564583517, 'colsample_bytree': 1.0, 'max_depth': 58, 'subsample': 1.0, 'lambda': 56.039477254058617, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58492 valid-rmse:4.60321 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.490727 valid-rmse:0.530828 [20] train-rmse:0.346271 valid-rmse:0.393594 [30] train-rmse:0.335198 valid-rmse:0.384301 [39] train-rmse:0.330669 valid-rmse:0.381537 Iteration No: 459 ended. Search finished for the next optimal point. Time taken: 31.9209 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 460 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.18727074658907225, 'colsample_bytree': 1.0, 'max_depth': 48, 'subsample': 1.0, 'lambda': 25.251412493762054, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88546 valid-rmse:4.90345 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.730391 valid-rmse:0.762313 [20] train-rmse:0.359139 valid-rmse:0.40593 [30] train-rmse:0.335724 valid-rmse:0.384807 [39] train-rmse:0.330675 valid-rmse:0.3814 Iteration No: 460 ended. Search finished for the next optimal point. Time taken: 31.3458 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 461 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 177, 'eta': 0.20451743897387703, 'colsample_bytree': 0.40000000000000002, 'max_depth': 47, 'subsample': 1.0, 'lambda': 34.521735108858906, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.78369 valid-rmse:4.80182 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.632474 valid-rmse:0.66697 [20] train-rmse:0.360143 valid-rmse:0.406029 [30] train-rmse:0.339558 valid-rmse:0.387647 [39] train-rmse:0.333209 valid-rmse:0.383051 Iteration No: 461 ended. Search finished for the next optimal point. Time taken: 21.6309 Function value obtained: 0.3831 Current minimum: 0.3801 Iteration No: 462 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26972603480048163, 'colsample_bytree': 1.0, 'max_depth': 77, 'subsample': 1.0, 'lambda': 56.119091635900915, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3968 valid-rmse:4.41516 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.424257 valid-rmse:0.467108 [20] train-rmse:0.344169 valid-rmse:0.390409 [30] train-rmse:0.335851 valid-rmse:0.383547 [39] train-rmse:0.332674 valid-rmse:0.381591 Iteration No: 462 ended. Search finished for the next optimal point. Time taken: 29.7510 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 463 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.26034009361555033, 'colsample_bytree': 1.0, 'max_depth': 70, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45393 valid-rmse:4.47219 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.441736 valid-rmse:0.484232 [20] train-rmse:0.344236 valid-rmse:0.392009 [30] train-rmse:0.333487 valid-rmse:0.383408 [39] train-rmse:0.329545 valid-rmse:0.381325 Iteration No: 463 ended. Search finished for the next optimal point. Time taken: 33.0229 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 464 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.18001833143489054, 'colsample_bytree': 1.0, 'max_depth': 53, 'subsample': 1.0, 'lambda': 23.512294419531557, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92851 valid-rmse:4.94649 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.784546 valid-rmse:0.814967 [20] train-rmse:0.364551 valid-rmse:0.410889 [30] train-rmse:0.336537 valid-rmse:0.385597 [39] train-rmse:0.330424 valid-rmse:0.381156 Iteration No: 464 ended. Search finished for the next optimal point. Time taken: 30.6647 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 465 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.16749052531722233, 'colsample_bytree': 1.0, 'max_depth': 165, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00029 valid-rmse:5.01786 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.873706 valid-rmse:0.90204 [20] train-rmse:0.363076 valid-rmse:0.411902 [30] train-rmse:0.334001 valid-rmse:0.385442 [39] train-rmse:0.32952 valid-rmse:0.38244 Iteration No: 465 ended. Search finished for the next optimal point. Time taken: 37.8902 Function value obtained: 0.3824 Current minimum: 0.3801 Iteration No: 466 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 16, 'eta': 0.18881025671216295, 'colsample_bytree': 0.92346277987454661, 'max_depth': 167, 'subsample': 0.88748719175709323, 'lambda': 86.569136396978649, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87853 valid-rmse:4.89668 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.730761 valid-rmse:0.763359 [20] train-rmse:0.36507 valid-rmse:0.413279 [30] train-rmse:0.335838 valid-rmse:0.387595 [39] train-rmse:0.328013 valid-rmse:0.382546 Iteration No: 466 ended. Search finished for the next optimal point. Time taken: 30.8182 Function value obtained: 0.3825 Current minimum: 0.3801 Iteration No: 467 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.26045779717690298, 'colsample_bytree': 1.0, 'max_depth': 71, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45323 valid-rmse:4.47149 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.441525 valid-rmse:0.484036 [20] train-rmse:0.344487 valid-rmse:0.392361 [30] train-rmse:0.333936 valid-rmse:0.384121 [39] train-rmse:0.329682 valid-rmse:0.38157 Iteration No: 467 ended. Search finished for the next optimal point. Time taken: 32.9438 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 468 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 172, 'eta': 0.21679303652521675, 'colsample_bytree': 1.0, 'max_depth': 166, 'subsample': 1.0, 'lambda': 57.284164912912786, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.71118 valid-rmse:4.72943 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.568747 valid-rmse:0.605388 [20] train-rmse:0.350465 valid-rmse:0.397121 [30] train-rmse:0.336126 valid-rmse:0.384505 [39] train-rmse:0.330864 valid-rmse:0.380979 Iteration No: 468 ended. Search finished for the next optimal point. Time taken: 31.6534 Function value obtained: 0.3810 Current minimum: 0.3801 Iteration No: 469 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 184, 'eta': 0.18416890624260135, 'colsample_bytree': 1.0, 'max_depth': 54, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90086 valid-rmse:4.91835 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.731269 valid-rmse:0.762183 [20] train-rmse:0.349935 valid-rmse:0.398748 [30] train-rmse:0.333395 valid-rmse:0.383756 [39] train-rmse:0.330208 valid-rmse:0.381503 Iteration No: 469 ended. Search finished for the next optimal point. Time taken: 36.4380 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 470 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 128, 'eta': 0.2347956103518021, 'colsample_bytree': 1.0, 'max_depth': 165, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.60546 valid-rmse:4.62367 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.506348 valid-rmse:0.545747 [20] train-rmse:0.347669 valid-rmse:0.395384 [30] train-rmse:0.335115 valid-rmse:0.384863 [39] train-rmse:0.330388 valid-rmse:0.381949 Iteration No: 470 ended. Search finished for the next optimal point. Time taken: 31.9589 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 471 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 291, 'eta': 0.29705111880626411, 'colsample_bytree': 0.96923086004324532, 'max_depth': 147, 'subsample': 0.8550966284073489, 'lambda': 1.2688645591899239, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22926 valid-rmse:4.24695 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.373744 valid-rmse:0.419263 [20] train-rmse:0.339793 valid-rmse:0.387326 [30] train-rmse:0.335656 valid-rmse:0.384541 [39] train-rmse:0.33373 valid-rmse:0.383877 Iteration No: 471 ended. Search finished for the next optimal point. Time taken: 36.1404 Function value obtained: 0.3839 Current minimum: 0.3801 Iteration No: 472 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 127, 'eta': 0.18025811028875977, 'colsample_bytree': 1.0, 'max_depth': 53, 'subsample': 1.0, 'lambda': 28.371930866020747, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92728 valid-rmse:4.94527 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.783761 valid-rmse:0.814499 [20] train-rmse:0.364879 valid-rmse:0.4117 [30] train-rmse:0.336475 valid-rmse:0.386009 [39] train-rmse:0.330277 valid-rmse:0.381649 Iteration No: 472 ended. Search finished for the next optimal point. Time taken: 31.3358 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 473 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 29, 'eta': 0.23222300180906655, 'colsample_bytree': 0.99168102441205008, 'max_depth': 135, 'subsample': 0.81744586741070124, 'lambda': 4.8615642402280246, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.61611 valid-rmse:4.63399 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.490187 valid-rmse:0.531531 [20] train-rmse:0.334299 valid-rmse:0.390778 [30] train-rmse:0.32736 valid-rmse:0.388689 [39] train-rmse:0.326136 valid-rmse:0.389645 Iteration No: 473 ended. Search finished for the next optimal point. Time taken: 51.2828 Function value obtained: 0.3896 Current minimum: 0.3801 Iteration No: 474 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.16448763257628995, 'colsample_bytree': 1.0, 'max_depth': 137, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01822 valid-rmse:5.0358 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.903834 valid-rmse:0.931545 [20] train-rmse:0.366662 valid-rmse:0.415438 [30] train-rmse:0.333323 valid-rmse:0.384898 [39] train-rmse:0.329112 valid-rmse:0.382032 Iteration No: 474 ended. Search finished for the next optimal point. Time taken: 37.4373 Function value obtained: 0.3820 Current minimum: 0.3801 Iteration No: 475 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 146, 'eta': 0.16785736564601744, 'colsample_bytree': 1.0, 'max_depth': 166, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99814 valid-rmse:5.01573 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.870675 valid-rmse:0.899048 [20] train-rmse:0.362972 valid-rmse:0.411881 [30] train-rmse:0.333274 valid-rmse:0.384609 [39] train-rmse:0.329496 valid-rmse:0.382118 Iteration No: 475 ended. Search finished for the next optimal point. Time taken: 37.6018 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 476 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27019111780818683, 'colsample_bytree': 1.0, 'max_depth': 63, 'subsample': 1.0, 'lambda': 42.22303586577295, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.39345 valid-rmse:4.41181 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.420415 valid-rmse:0.463659 [20] train-rmse:0.343673 valid-rmse:0.390171 [30] train-rmse:0.335672 valid-rmse:0.383911 [39] train-rmse:0.332315 valid-rmse:0.381945 Iteration No: 476 ended. Search finished for the next optimal point. Time taken: 33.2234 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 477 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 128, 'eta': 0.18020171879781063, 'colsample_bytree': 1.0, 'max_depth': 54, 'subsample': 1.0, 'lambda': 28.085484850045397, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92761 valid-rmse:4.94559 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.784651 valid-rmse:0.815195 [20] train-rmse:0.36516 valid-rmse:0.411673 [30] train-rmse:0.336529 valid-rmse:0.385522 [39] train-rmse:0.330144 valid-rmse:0.380824 Iteration No: 477 ended. Search finished for the next optimal point. Time taken: 31.8474 Function value obtained: 0.3808 Current minimum: 0.3801 Iteration No: 478 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.23931868549879023, 'colsample_bytree': 1.0, 'max_depth': 65, 'subsample': 1.0, 'lambda': 59.325419382410495, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.57748 valid-rmse:4.59577 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.487528 valid-rmse:0.527704 [20] train-rmse:0.346592 valid-rmse:0.393906 [30] train-rmse:0.334324 valid-rmse:0.383801 [39] train-rmse:0.330372 valid-rmse:0.381498 Iteration No: 478 ended. Search finished for the next optimal point. Time taken: 33.2506 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 479 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.19271541764992461, 'colsample_bytree': 1.0, 'max_depth': 65, 'subsample': 1.0, 'lambda': 51.927060228173531, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85408 valid-rmse:4.87228 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.69836 valid-rmse:0.731138 [20] train-rmse:0.360643 valid-rmse:0.406966 [30] train-rmse:0.337519 valid-rmse:0.38588 [39] train-rmse:0.331431 valid-rmse:0.381423 Iteration No: 479 ended. Search finished for the next optimal point. Time taken: 30.9521 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 480 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 168, 'eta': 0.20497576430038622, 'colsample_bytree': 1.0, 'max_depth': 168, 'subsample': 1.0, 'lambda': 49.5033151970379, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.78114 valid-rmse:4.79936 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.624398 valid-rmse:0.659135 [20] train-rmse:0.353414 valid-rmse:0.400021 [30] train-rmse:0.336718 valid-rmse:0.385174 [39] train-rmse:0.331477 valid-rmse:0.381778 Iteration No: 480 ended. Search finished for the next optimal point. Time taken: 31.0819 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 481 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.20186583438983191, 'colsample_bytree': 1.0, 'max_depth': 64, 'subsample': 1.0, 'lambda': 51.362126138299708, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.79968 valid-rmse:4.8179 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.642521 valid-rmse:0.676685 [20] train-rmse:0.356344 valid-rmse:0.402695 [30] train-rmse:0.337586 valid-rmse:0.385563 [39] train-rmse:0.332196 valid-rmse:0.381711 Iteration No: 481 ended. Search finished for the next optimal point. Time taken: 31.4664 Function value obtained: 0.3817 Current minimum: 0.3801 Iteration No: 482 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 27, 'eta': 0.15978506598974629, 'colsample_bytree': 0.4314699849452287, 'max_depth': 156, 'subsample': 0.8100971050787481, 'lambda': 3.9347646892862547, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.04797 valid-rmse:5.06573 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.967872 valid-rmse:0.995212 [20] train-rmse:0.384095 valid-rmse:0.433348 [30] train-rmse:0.331881 valid-rmse:0.38825 [39] train-rmse:0.324918 valid-rmse:0.384298 Iteration No: 482 ended. Search finished for the next optimal point. Time taken: 27.3607 Function value obtained: 0.3843 Current minimum: 0.3801 Iteration No: 483 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.18327202759711406, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 37.787660998733841, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9098 valid-rmse:4.92798 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.762791 valid-rmse:0.794156 [20] train-rmse:0.365009 valid-rmse:0.411976 [30] train-rmse:0.337534 valid-rmse:0.386459 [39] train-rmse:0.331155 valid-rmse:0.381527 Iteration No: 483 ended. Search finished for the next optimal point. Time taken: 33.2821 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 484 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.25084696041418325, 'colsample_bytree': 1.0, 'max_depth': 84, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.51023 valid-rmse:4.52848 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.46328 valid-rmse:0.504825 [20] train-rmse:0.345765 valid-rmse:0.393432 [30] train-rmse:0.335026 valid-rmse:0.384944 [39] train-rmse:0.330459 valid-rmse:0.382143 Iteration No: 484 ended. Search finished for the next optimal point. Time taken: 33.4697 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 485 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.17879308931447202, 'colsample_bytree': 1.0, 'max_depth': 55, 'subsample': 1.0, 'lambda': 25.670473657782473, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93588 valid-rmse:4.95387 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.795456 valid-rmse:0.825824 [20] train-rmse:0.3655 valid-rmse:0.412368 [30] train-rmse:0.336268 valid-rmse:0.385432 [39] train-rmse:0.329448 valid-rmse:0.380419 Iteration No: 485 ended. Search finished for the next optimal point. Time taken: 32.5630 Function value obtained: 0.3804 Current minimum: 0.3801 Iteration No: 486 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 294, 'eta': 0.15442900598286174, 'colsample_bytree': 0.97653320655816822, 'max_depth': 74, 'subsample': 0.82862560334287805, 'lambda': 4.5984205731937005, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.0797 valid-rmse:5.09758 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.02499 valid-rmse:1.05103 [20] train-rmse:0.398775 valid-rmse:0.442791 [30] train-rmse:0.344613 valid-rmse:0.391293 [39] train-rmse:0.337093 valid-rmse:0.384386 Iteration No: 486 ended. Search finished for the next optimal point. Time taken: 28.4598 Function value obtained: 0.3844 Current minimum: 0.3801 Iteration No: 487 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.26816267407135719, 'colsample_bytree': 1.0, 'max_depth': 170, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40753 valid-rmse:4.42581 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.428876 valid-rmse:0.471837 [20] train-rmse:0.343247 valid-rmse:0.39056 [30] train-rmse:0.333708 valid-rmse:0.38331 [39] train-rmse:0.329764 valid-rmse:0.38103 Iteration No: 487 ended. Search finished for the next optimal point. Time taken: 34.3820 Function value obtained: 0.3810 Current minimum: 0.3801 Iteration No: 488 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 127, 'eta': 0.17897279877987668, 'colsample_bytree': 1.0, 'max_depth': 55, 'subsample': 1.0, 'lambda': 26.314030962562615, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93484 valid-rmse:4.95283 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.793857 valid-rmse:0.824286 [20] train-rmse:0.365929 valid-rmse:0.41264 [30] train-rmse:0.336493 valid-rmse:0.385459 [39] train-rmse:0.330424 valid-rmse:0.381257 Iteration No: 488 ended. Search finished for the next optimal point. Time taken: 31.5469 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 489 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 147, 'eta': 0.16352525362158515, 'colsample_bytree': 1.0, 'max_depth': 126, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02399 valid-rmse:5.04159 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.913678 valid-rmse:0.941246 [20] train-rmse:0.368627 valid-rmse:0.416985 [30] train-rmse:0.334549 valid-rmse:0.385772 [39] train-rmse:0.330129 valid-rmse:0.38263 Iteration No: 489 ended. Search finished for the next optimal point. Time taken: 37.7314 Function value obtained: 0.3826 Current minimum: 0.3801 Iteration No: 490 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.17837662338104338, 'colsample_bytree': 1.0, 'max_depth': 62, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93542 valid-rmse:4.95296 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.77649 valid-rmse:0.806668 [20] train-rmse:0.353159 valid-rmse:0.40232 [30] train-rmse:0.333394 valid-rmse:0.38431 [39] train-rmse:0.329667 valid-rmse:0.381886 Iteration No: 490 ended. Search finished for the next optimal point. Time taken: 38.2123 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 491 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.18326046134636506, 'colsample_bytree': 1.0, 'max_depth': 67, 'subsample': 1.0, 'lambda': 46.611243887049852, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91012 valid-rmse:4.92831 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.764593 valid-rmse:0.795854 [20] train-rmse:0.365694 valid-rmse:0.412618 [30] train-rmse:0.337472 valid-rmse:0.38641 [39] train-rmse:0.331473 valid-rmse:0.38195 Iteration No: 491 ended. Search finished for the next optimal point. Time taken: 31.8106 Function value obtained: 0.3820 Current minimum: 0.3801 Iteration No: 492 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 191, 'eta': 0.22411480280322083, 'colsample_bytree': 1.0, 'max_depth': 168, 'subsample': 1.0, 'lambda': 57.930736072074012, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.66772 valid-rmse:4.68598 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.538834 valid-rmse:0.576599 [20] train-rmse:0.349975 valid-rmse:0.396176 [30] train-rmse:0.336251 valid-rmse:0.384248 [39] train-rmse:0.331773 valid-rmse:0.381434 Iteration No: 492 ended. Search finished for the next optimal point. Time taken: 33.7463 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 493 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.25739664499927811, 'colsample_bytree': 1.0, 'max_depth': 166, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.47138 valid-rmse:4.48964 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.448639 valid-rmse:0.490748 [20] train-rmse:0.344995 valid-rmse:0.392347 [30] train-rmse:0.334274 valid-rmse:0.383869 [39] train-rmse:0.330409 valid-rmse:0.381883 Iteration No: 493 ended. Search finished for the next optimal point. Time taken: 34.3859 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 494 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 288, 'eta': 0.18279565770972275, 'colsample_bytree': 0.83922194132709349, 'max_depth': 153, 'subsample': 0.95770261399864598, 'lambda': 88.823161961007486, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91448 valid-rmse:4.93271 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.775845 valid-rmse:0.806952 [20] train-rmse:0.376312 valid-rmse:0.421562 [30] train-rmse:0.346842 valid-rmse:0.393313 [39] train-rmse:0.338927 valid-rmse:0.386151 Iteration No: 494 ended. Search finished for the next optimal point. Time taken: 28.1059 Function value obtained: 0.3862 Current minimum: 0.3801 Iteration No: 495 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27131585475148967, 'colsample_bytree': 1.0, 'max_depth': 65, 'subsample': 1.0, 'lambda': 42.594903178042379, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38679 valid-rmse:4.40515 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.418933 valid-rmse:0.462135 [20] train-rmse:0.343938 valid-rmse:0.390666 [30] train-rmse:0.335525 valid-rmse:0.383965 [39] train-rmse:0.332505 valid-rmse:0.38204 Iteration No: 495 ended. Search finished for the next optimal point. Time taken: 34.9166 Function value obtained: 0.3820 Current minimum: 0.3801 Iteration No: 496 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.18788017115218369, 'colsample_bytree': 1.0, 'max_depth': 169, 'subsample': 1.0, 'lambda': 37.367077511209658, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88238 valid-rmse:4.90058 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.728357 valid-rmse:0.760516 [20] train-rmse:0.361053 valid-rmse:0.408171 [30] train-rmse:0.336865 valid-rmse:0.385945 [39] train-rmse:0.331209 valid-rmse:0.381983 Iteration No: 496 ended. Search finished for the next optimal point. Time taken: 32.6301 Function value obtained: 0.3820 Current minimum: 0.3801 Iteration No: 497 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 125, 'eta': 0.18062777203951758, 'colsample_bytree': 1.0, 'max_depth': 55, 'subsample': 1.0, 'lambda': 28.421307289386302, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92509 valid-rmse:4.94308 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.780984 valid-rmse:0.811642 [20] train-rmse:0.364741 valid-rmse:0.411567 [30] train-rmse:0.336742 valid-rmse:0.385993 [39] train-rmse:0.330665 valid-rmse:0.38165 Iteration No: 497 ended. Search finished for the next optimal point. Time taken: 33.1118 Function value obtained: 0.3817 Current minimum: 0.3801 Iteration No: 498 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 173, 'eta': 0.23903522078970352, 'colsample_bytree': 1.0, 'max_depth': 65, 'subsample': 1.0, 'lambda': 57.408833369571667, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.57908 valid-rmse:4.59737 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.488364 valid-rmse:0.528508 [20] train-rmse:0.346135 valid-rmse:0.393603 [30] train-rmse:0.334691 valid-rmse:0.384307 [39] train-rmse:0.330372 valid-rmse:0.381563 Iteration No: 498 ended. Search finished for the next optimal point. Time taken: 34.9907 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 499 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.18241951235794288, 'colsample_bytree': 0.67044288053755463, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.886167342482178, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91438 valid-rmse:4.9323 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.766228 valid-rmse:0.7968 [20] train-rmse:0.362889 valid-rmse:0.409279 [30] train-rmse:0.336387 valid-rmse:0.384992 [39] train-rmse:0.330721 valid-rmse:0.380897 Iteration No: 499 ended. Search finished for the next optimal point. Time taken: 28.8180 Function value obtained: 0.3809 Current minimum: 0.3801 Iteration No: 500 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.18037309273917013, 'colsample_bytree': 0.40000000000000002, 'max_depth': 64, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92392 valid-rmse:4.94146 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.765017 valid-rmse:0.795455 [20] train-rmse:0.356098 valid-rmse:0.404997 [30] train-rmse:0.334595 valid-rmse:0.3858 [39] train-rmse:0.329931 valid-rmse:0.382647 Iteration No: 500 ended. Search finished for the next optimal point. Time taken: 27.2301 Function value obtained: 0.3826 Current minimum: 0.3801 Iteration No: 501 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 198, 'eta': 0.19678978875351105, 'colsample_bytree': 1.0, 'max_depth': 63, 'subsample': 1.0, 'lambda': 42.688362351321686, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82958 valid-rmse:4.84779 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.670704 valid-rmse:0.704132 [20] train-rmse:0.357969 valid-rmse:0.40397 [30] train-rmse:0.338252 valid-rmse:0.386131 [39] train-rmse:0.332627 valid-rmse:0.381908 Iteration No: 501 ended. Search finished for the next optimal point. Time taken: 32.5364 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 502 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.2591236398755794, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 39.213805791422843, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45906 valid-rmse:4.47739 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.438978 valid-rmse:0.481114 [20] train-rmse:0.345217 valid-rmse:0.391358 [30] train-rmse:0.336586 valid-rmse:0.384055 [39] train-rmse:0.333065 valid-rmse:0.381921 Iteration No: 502 ended. Search finished for the next optimal point. Time taken: 34.3462 Function value obtained: 0.3819 Current minimum: 0.3801 Iteration No: 503 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 161, 'eta': 0.20257363346953827, 'colsample_bytree': 1.0, 'max_depth': 51, 'subsample': 1.0, 'lambda': 32.791821396137529, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.79486 valid-rmse:4.81308 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.634393 valid-rmse:0.669135 [20] train-rmse:0.352244 valid-rmse:0.399531 [30] train-rmse:0.335034 valid-rmse:0.384245 [39] train-rmse:0.329925 valid-rmse:0.38071 Iteration No: 503 ended. Search finished for the next optimal point. Time taken: 33.2700 Function value obtained: 0.3807 Current minimum: 0.3801 Iteration No: 504 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 141, 'eta': 0.1815955553925597, 'colsample_bytree': 0.70780412145054794, 'max_depth': 62, 'subsample': 1.0, 'lambda': 25.34105691668374, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91943 valid-rmse:4.93734 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.773216 valid-rmse:0.803815 [20] train-rmse:0.364074 valid-rmse:0.410565 [30] train-rmse:0.336872 valid-rmse:0.385703 [39] train-rmse:0.330823 valid-rmse:0.38126 Iteration No: 504 ended. Search finished for the next optimal point. Time taken: 28.2075 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 505 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 153, 'eta': 0.16379055649106836, 'colsample_bytree': 1.0, 'max_depth': 127, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02246 valid-rmse:5.04008 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.91113 valid-rmse:0.938583 [20] train-rmse:0.368601 valid-rmse:0.41684 [30] train-rmse:0.334883 valid-rmse:0.385752 [39] train-rmse:0.330372 valid-rmse:0.382455 Iteration No: 505 ended. Search finished for the next optimal point. Time taken: 38.9096 Function value obtained: 0.3825 Current minimum: 0.3801 Iteration No: 506 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.16965119769410594, 'colsample_bytree': 1.0, 'max_depth': 167, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98749 valid-rmse:5.00506 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.853538 valid-rmse:0.882427 [20] train-rmse:0.361377 valid-rmse:0.410309 [30] train-rmse:0.334175 valid-rmse:0.385198 [39] train-rmse:0.330182 valid-rmse:0.382496 Iteration No: 506 ended. Search finished for the next optimal point. Time taken: 37.8620 Function value obtained: 0.3825 Current minimum: 0.3801 Iteration No: 507 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.26823723448743941, 'colsample_bytree': 1.0, 'max_depth': 76, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40709 valid-rmse:4.42537 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.429194 valid-rmse:0.472385 [20] train-rmse:0.343598 valid-rmse:0.391214 [30] train-rmse:0.333758 valid-rmse:0.383693 [39] train-rmse:0.329655 valid-rmse:0.381438 Iteration No: 507 ended. Search finished for the next optimal point. Time taken: 36.1173 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 508 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 141, 'eta': 0.18169451247114446, 'colsample_bytree': 0.71055073081742104, 'max_depth': 62, 'subsample': 1.0, 'lambda': 25.271614936360972, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91884 valid-rmse:4.93675 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.772432 valid-rmse:0.80305 [20] train-rmse:0.363605 valid-rmse:0.410257 [30] train-rmse:0.336757 valid-rmse:0.385745 [39] train-rmse:0.330686 valid-rmse:0.381305 Iteration No: 508 ended. Search finished for the next optimal point. Time taken: 29.7689 Function value obtained: 0.3813 Current minimum: 0.3801 Iteration No: 509 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.2730596269180488, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 45.395585600033897, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37655 valid-rmse:4.39492 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.416305 valid-rmse:0.459458 [20] train-rmse:0.343708 valid-rmse:0.389748 [30] train-rmse:0.335836 valid-rmse:0.383795 [39] train-rmse:0.332541 valid-rmse:0.38175 Iteration No: 509 ended. Search finished for the next optimal point. Time taken: 35.2784 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 510 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 118, 'eta': 0.23689196070605925, 'colsample_bytree': 1.0, 'max_depth': 167, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59302 valid-rmse:4.61124 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.499419 valid-rmse:0.539341 [20] train-rmse:0.347668 valid-rmse:0.395312 [30] train-rmse:0.33426 valid-rmse:0.384074 [39] train-rmse:0.329502 valid-rmse:0.381181 Iteration No: 510 ended. Search finished for the next optimal point. Time taken: 36.7841 Function value obtained: 0.3812 Current minimum: 0.3801 Iteration No: 511 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.18511472703908827, 'colsample_bytree': 1.0, 'max_depth': 68, 'subsample': 1.0, 'lambda': 48.156141261965743, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89914 valid-rmse:4.91733 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.750465 valid-rmse:0.781813 [20] train-rmse:0.365011 valid-rmse:0.411281 [30] train-rmse:0.338094 valid-rmse:0.386385 [39] train-rmse:0.331719 valid-rmse:0.381615 Iteration No: 511 ended. Search finished for the next optimal point. Time taken: 33.9686 Function value obtained: 0.3816 Current minimum: 0.3801 Iteration No: 512 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.27540889822778947, 'colsample_bytree': 1.0, 'max_depth': 90, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3646 valid-rmse:4.38296 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419127 valid-rmse:0.462445 [20] train-rmse:0.343833 valid-rmse:0.391322 [30] train-rmse:0.334395 valid-rmse:0.383916 [39] train-rmse:0.331009 valid-rmse:0.382255 Iteration No: 512 ended. Search finished for the next optimal point. Time taken: 36.0030 Function value obtained: 0.3823 Current minimum: 0.3801 Iteration No: 513 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.21204391471694861, 'colsample_bytree': 1.0, 'max_depth': 168, 'subsample': 1.0, 'lambda': 54.788823549742865, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.73931 valid-rmse:4.75755 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.590147 valid-rmse:0.626074 [20] train-rmse:0.352241 valid-rmse:0.398994 [30] train-rmse:0.336613 valid-rmse:0.385181 [39] train-rmse:0.331082 valid-rmse:0.381355 Iteration No: 513 ended. Search finished for the next optimal point. Time taken: 33.6606 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 514 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 174, 'eta': 0.20108695628917456, 'colsample_bytree': 0.40000000000000002, 'max_depth': 50, 'subsample': 1.0, 'lambda': 32.531060513402537, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80399 valid-rmse:4.8221 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.650121 valid-rmse:0.684274 [20] train-rmse:0.360681 valid-rmse:0.406656 [30] train-rmse:0.339424 valid-rmse:0.387258 [39] train-rmse:0.33292 valid-rmse:0.382299 Iteration No: 514 ended. Search finished for the next optimal point. Time taken: 25.3642 Function value obtained: 0.3823 Current minimum: 0.3801 Iteration No: 515 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 148, 'eta': 0.16302655109073896, 'colsample_bytree': 1.0, 'max_depth': 117, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02697 valid-rmse:5.04457 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.918249 valid-rmse:0.945632 [20] train-rmse:0.369041 valid-rmse:0.417075 [30] train-rmse:0.334235 valid-rmse:0.38516 [39] train-rmse:0.329497 valid-rmse:0.381542 Iteration No: 515 ended. Search finished for the next optimal point. Time taken: 39.5523 Function value obtained: 0.3815 Current minimum: 0.3801 Iteration No: 516 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.27435562784797229, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37081 valid-rmse:4.3891 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419315 valid-rmse:0.462927 [20] train-rmse:0.342789 valid-rmse:0.390763 [30] train-rmse:0.333623 valid-rmse:0.383752 [39] train-rmse:0.329512 valid-rmse:0.381761 Iteration No: 516 ended. Search finished for the next optimal point. Time taken: 36.6034 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 517 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 175, 'eta': 0.24220718646413794, 'colsample_bytree': 1.0, 'max_depth': 68, 'subsample': 1.0, 'lambda': 58.947638660304307, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56031 valid-rmse:4.57861 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.480164 valid-rmse:0.520923 [20] train-rmse:0.345738 valid-rmse:0.392964 [30] train-rmse:0.335066 valid-rmse:0.384131 [39] train-rmse:0.331035 valid-rmse:0.381438 Iteration No: 517 ended. Search finished for the next optimal point. Time taken: 36.0535 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 518 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 140, 'eta': 0.185491612361112, 'colsample_bytree': 1.0, 'max_depth': 169, 'subsample': 1.0, 'lambda': 37.314563801950584, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89658 valid-rmse:4.91478 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.745832 valid-rmse:0.777408 [20] train-rmse:0.362443 valid-rmse:0.40917 [30] train-rmse:0.336886 valid-rmse:0.385898 [39] train-rmse:0.331271 valid-rmse:0.382072 Iteration No: 518 ended. Search finished for the next optimal point. Time taken: 35.7444 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 519 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 211, 'eta': 0.20081282622413027, 'colsample_bytree': 1.0, 'max_depth': 63, 'subsample': 1.0, 'lambda': 41.348602297202241, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.80562 valid-rmse:4.82384 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.646845 valid-rmse:0.680973 [20] train-rmse:0.355924 valid-rmse:0.402482 [30] train-rmse:0.338219 valid-rmse:0.386227 [39] train-rmse:0.333373 valid-rmse:0.382619 Iteration No: 519 ended. Search finished for the next optimal point. Time taken: 35.8154 Function value obtained: 0.3826 Current minimum: 0.3801 Iteration No: 520 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 114, 'eta': 0.23390486860428097, 'colsample_bytree': 1.0, 'max_depth': 167, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.61075 valid-rmse:4.62896 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.507744 valid-rmse:0.547165 [20] train-rmse:0.347908 valid-rmse:0.395487 [30] train-rmse:0.335258 valid-rmse:0.384878 [39] train-rmse:0.330177 valid-rmse:0.381843 Iteration No: 520 ended. Search finished for the next optimal point. Time taken: 36.3587 Function value obtained: 0.3818 Current minimum: 0.3801 Iteration No: 521 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 114, 'eta': 0.2577923096703586, 'colsample_bytree': 1.0, 'max_depth': 76, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.46904 valid-rmse:4.48729 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.446424 valid-rmse:0.488836 [20] train-rmse:0.343981 valid-rmse:0.392448 [30] train-rmse:0.333146 valid-rmse:0.383747 [39] train-rmse:0.328741 valid-rmse:0.381366 Iteration No: 521 ended. Search finished for the next optimal point. Time taken: 37.9323 Function value obtained: 0.3814 Current minimum: 0.3801 Iteration No: 522 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.17880223549788704, 'colsample_bytree': 0.70551622641393519, 'max_depth': 65, 'subsample': 1.0, 'lambda': 24.243008244417673, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.936 valid-rmse:4.95392 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.795423 valid-rmse:0.825496 [20] train-rmse:0.365973 valid-rmse:0.41264 [30] train-rmse:0.336183 valid-rmse:0.385365 [39] train-rmse:0.330151 valid-rmse:0.381033 Iteration No: 522 ended. Search finished for the next optimal point. Time taken: 32.0665 Function value obtained: 0.3810 Current minimum: 0.3801 Iteration No: 523 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 141, 'eta': 0.16587884140511952, 'colsample_bytree': 1.0, 'max_depth': 84, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00994 valid-rmse:5.02751 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.889903 valid-rmse:0.918004 [20] train-rmse:0.364994 valid-rmse:0.413828 [30] train-rmse:0.333355 valid-rmse:0.384888 [39] train-rmse:0.329345 valid-rmse:0.382075 Iteration No: 523 ended. Search finished for the next optimal point. Time taken: 43.3169 Function value obtained: 0.3821 Current minimum: 0.3801 Iteration No: 524 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.17909066395456077, 'colsample_bytree': 0.70439975123105469, 'max_depth': 65, 'subsample': 1.0, 'lambda': 24.349362978474417, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93429 valid-rmse:4.95221 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.793115 valid-rmse:0.823235 [20] train-rmse:0.365602 valid-rmse:0.412263 [30] train-rmse:0.336299 valid-rmse:0.38557 [39] train-rmse:0.330144 valid-rmse:0.381053 Iteration No: 524 ended. Search finished for the next optimal point. Time taken: 32.1825 Function value obtained: 0.3811 Current minimum: 0.3801 Iteration No: 525 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.17936020611338641, 'colsample_bytree': 0.70459161599199072, 'max_depth': 64, 'subsample': 1.0, 'lambda': 24.2701922969149, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93268 valid-rmse:4.9506 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.790717 valid-rmse:0.820741 [20] train-rmse:0.365798 valid-rmse:0.41207 [30] train-rmse:0.336347 valid-rmse:0.384946 [39] train-rmse:0.329472 valid-rmse:0.3798 Iteration No: 525 ended. Search finished for the next optimal point. Time taken: 30.9812 Function value obtained: 0.3798 Current minimum: 0.3798 Iteration No: 526 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.17921499281206149, 'colsample_bytree': 0.70422327936628815, 'max_depth': 64, 'subsample': 1.0, 'lambda': 24.230964371098764, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93354 valid-rmse:4.95147 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.791877 valid-rmse:0.821876 [20] train-rmse:0.365902 valid-rmse:0.412295 [30] train-rmse:0.336539 valid-rmse:0.385464 [39] train-rmse:0.330365 valid-rmse:0.380938 Iteration No: 526 ended. Search finished for the next optimal point. Time taken: 31.6201 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 527 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 174, 'eta': 0.21104008197400925, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 59.86573650866854, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.74558 valid-rmse:4.76377 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.59599 valid-rmse:0.631805 [20] train-rmse:0.353834 valid-rmse:0.400623 [30] train-rmse:0.337279 valid-rmse:0.385733 [39] train-rmse:0.331921 valid-rmse:0.382201 Iteration No: 527 ended. Search finished for the next optimal point. Time taken: 34.9971 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 528 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 298, 'eta': 0.14901873633858384, 'colsample_bytree': 0.94360645791072018, 'max_depth': 106, 'subsample': 0.99958693789946551, 'lambda': 86.305462237948902, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.11463 valid-rmse:5.13274 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.10617 valid-rmse:1.13235 [20] train-rmse:0.430763 valid-rmse:0.47353 [30] train-rmse:0.355307 valid-rmse:0.401639 [39] train-rmse:0.342705 valid-rmse:0.389675 Iteration No: 528 ended. Search finished for the next optimal point. Time taken: 29.7422 Function value obtained: 0.3897 Current minimum: 0.3798 Iteration No: 529 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 84, 'subsample': 1.0, 'lambda': 67.64992888799668, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21786 valid-rmse:4.23623 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.39229 valid-rmse:0.436034 [20] train-rmse:0.343426 valid-rmse:0.389479 [30] train-rmse:0.336154 valid-rmse:0.384057 [39] train-rmse:0.332745 valid-rmse:0.381841 Iteration No: 529 ended. Search finished for the next optimal point. Time taken: 38.5976 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 530 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 119, 'eta': 0.17312032661957116, 'colsample_bytree': 1.0, 'max_depth': 65, 'subsample': 1.0, 'lambda': 25.698115103142673, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96963 valid-rmse:4.98762 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.843331 valid-rmse:0.872699 [20] train-rmse:0.371826 valid-rmse:0.418164 [30] train-rmse:0.337003 valid-rmse:0.386074 [39] train-rmse:0.330396 valid-rmse:0.381116 Iteration No: 530 ended. Search finished for the next optimal point. Time taken: 36.3797 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 531 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 139, 'eta': 0.17902786427301506, 'colsample_bytree': 1.0, 'max_depth': 75, 'subsample': 1.0, 'lambda': 43.384485846499594, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93519 valid-rmse:4.95337 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.79688 valid-rmse:0.827364 [20] train-rmse:0.369562 valid-rmse:0.415743 [30] train-rmse:0.338395 valid-rmse:0.386832 [39] train-rmse:0.331981 valid-rmse:0.381997 Iteration No: 531 ended. Search finished for the next optimal point. Time taken: 36.5583 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 532 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.17744687592703823, 'colsample_bytree': 0.70549727358743874, 'max_depth': 67, 'subsample': 1.0, 'lambda': 23.399597653763596, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94403 valid-rmse:4.96195 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.80631 valid-rmse:0.836173 [20] train-rmse:0.367541 valid-rmse:0.414 [30] train-rmse:0.336737 valid-rmse:0.385825 [39] train-rmse:0.330342 valid-rmse:0.38109 Iteration No: 532 ended. Search finished for the next optimal point. Time taken: 32.7047 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 533 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 175, 'eta': 0.27366846694455527, 'colsample_bytree': 1.0, 'max_depth': 94, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37492 valid-rmse:4.39328 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.421505 valid-rmse:0.464707 [20] train-rmse:0.344202 valid-rmse:0.391257 [30] train-rmse:0.334582 valid-rmse:0.383978 [39] train-rmse:0.331038 valid-rmse:0.381951 Iteration No: 533 ended. Search finished for the next optimal point. Time taken: 39.6754 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 534 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 285, 'eta': 0.29955700401802965, 'colsample_bytree': 0.51830812236506285, 'max_depth': 46, 'subsample': 0.80264078135502981, 'lambda': 1.6376727022324022, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21519 valid-rmse:4.23295 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.378521 valid-rmse:0.423274 [20] train-rmse:0.345502 valid-rmse:0.391136 [30] train-rmse:0.341066 valid-rmse:0.387305 [39] train-rmse:0.339332 valid-rmse:0.385897 Iteration No: 534 ended. Search finished for the next optimal point. Time taken: 30.6713 Function value obtained: 0.3859 Current minimum: 0.3798 Iteration No: 535 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 141, 'eta': 0.17921398595245069, 'colsample_bytree': 0.7004001701815854, 'max_depth': 65, 'subsample': 1.0, 'lambda': 22.453076981750328, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93347 valid-rmse:4.95139 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.791475 valid-rmse:0.821609 [20] train-rmse:0.365649 valid-rmse:0.412155 [30] train-rmse:0.336526 valid-rmse:0.385578 [39] train-rmse:0.330258 valid-rmse:0.38089 Iteration No: 535 ended. Search finished for the next optimal point. Time taken: 32.0788 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 536 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 173, 'eta': 0.23561892564173162, 'colsample_bytree': 1.0, 'max_depth': 82, 'subsample': 1.0, 'lambda': 71.962116370852357, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59999 valid-rmse:4.61823 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.502243 valid-rmse:0.541884 [20] train-rmse:0.347866 valid-rmse:0.394618 [30] train-rmse:0.335651 valid-rmse:0.38444 [39] train-rmse:0.330881 valid-rmse:0.381251 Iteration No: 536 ended. Search finished for the next optimal point. Time taken: 37.5240 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 537 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 123, 'eta': 0.24130062935229904, 'colsample_bytree': 1.0, 'max_depth': 87, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56687 valid-rmse:4.58509 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.486683 valid-rmse:0.526944 [20] train-rmse:0.34663 valid-rmse:0.394337 [30] train-rmse:0.334543 valid-rmse:0.384418 [39] train-rmse:0.329835 valid-rmse:0.381462 Iteration No: 537 ended. Search finished for the next optimal point. Time taken: 37.5884 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 538 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 15, 'eta': 0.29758509474121986, 'colsample_bytree': 0.40094806820100626, 'max_depth': 68, 'subsample': 0.84020587875165265, 'lambda': 89.956698418782864, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23409 valid-rmse:4.25261 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.401337 valid-rmse:0.446288 [20] train-rmse:0.347279 valid-rmse:0.395063 [30] train-rmse:0.337837 valid-rmse:0.387134 [39] train-rmse:0.334402 valid-rmse:0.384781 Iteration No: 538 ended. Search finished for the next optimal point. Time taken: 30.4804 Function value obtained: 0.3848 Current minimum: 0.3798 Iteration No: 539 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 17, 'eta': 0.29961126895644563, 'colsample_bytree': 0.53766766148472811, 'max_depth': 44, 'subsample': 0.96899244771917448, 'lambda': 85.96883782627414, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22151 valid-rmse:4.24003 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.394812 valid-rmse:0.439602 [20] train-rmse:0.346717 valid-rmse:0.393603 [30] train-rmse:0.339711 valid-rmse:0.387654 [39] train-rmse:0.336755 valid-rmse:0.3853 Iteration No: 539 ended. Search finished for the next optimal point. Time taken: 33.5868 Function value obtained: 0.3853 Current minimum: 0.3798 Iteration No: 540 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 299, 'eta': 0.10651220906848112, 'colsample_bytree': 0.87064106360923854, 'max_depth': 76, 'subsample': 0.88161372960589379, 'lambda': 89.148255917647433, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.36754 valid-rmse:5.38566 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.79755 valid-rmse:1.81948 [20] train-rmse:0.700549 valid-rmse:0.733692 [30] train-rmse:0.422007 valid-rmse:0.465194 [39] train-rmse:0.366526 valid-rmse:0.412109 Iteration No: 540 ended. Search finished for the next optimal point. Time taken: 27.1376 Function value obtained: 0.4121 Current minimum: 0.3798 Iteration No: 541 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 139, 'eta': 0.27447349882721694, 'colsample_bytree': 1.0, 'max_depth': 74, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37011 valid-rmse:4.3884 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419414 valid-rmse:0.463012 [20] train-rmse:0.342825 valid-rmse:0.390869 [30] train-rmse:0.333275 valid-rmse:0.383573 [39] train-rmse:0.329303 valid-rmse:0.381403 Iteration No: 541 ended. Search finished for the next optimal point. Time taken: 39.3938 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 542 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.29990329889121192, 'colsample_bytree': 0.40620948299256893, 'max_depth': 149, 'subsample': 0.9987988201718615, 'lambda': 33.686971650381658, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21682 valid-rmse:4.23499 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.389989 valid-rmse:0.434958 [20] train-rmse:0.346302 valid-rmse:0.393072 [30] train-rmse:0.339285 valid-rmse:0.387056 [39] train-rmse:0.336702 valid-rmse:0.38494 Iteration No: 542 ended. Search finished for the next optimal point. Time taken: 28.7173 Function value obtained: 0.3849 Current minimum: 0.3798 Iteration No: 543 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24274815969610922, 'colsample_bytree': 1.0, 'max_depth': 170, 'subsample': 1.0, 'lambda': 38.138516062433609, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55629 valid-rmse:4.57459 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.476062 valid-rmse:0.516667 [20] train-rmse:0.346463 valid-rmse:0.392672 [30] train-rmse:0.336688 valid-rmse:0.384378 [39] train-rmse:0.332913 valid-rmse:0.381752 Iteration No: 543 ended. Search finished for the next optimal point. Time taken: 38.1240 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 544 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.17649327739838683, 'colsample_bytree': 0.72156467496076515, 'max_depth': 68, 'subsample': 1.0, 'lambda': 24.310024267415464, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94973 valid-rmse:4.96765 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.814444 valid-rmse:0.84417 [20] train-rmse:0.369067 valid-rmse:0.414954 [30] train-rmse:0.337298 valid-rmse:0.385697 [39] train-rmse:0.330961 valid-rmse:0.381048 Iteration No: 544 ended. Search finished for the next optimal point. Time taken: 33.8867 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 545 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 113, 'eta': 0.17857131512401583, 'colsample_bytree': 1.0, 'max_depth': 56, 'subsample': 1.0, 'lambda': 31.654003432560074, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93745 valid-rmse:4.95543 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.798061 valid-rmse:0.828697 [20] train-rmse:0.366673 valid-rmse:0.413878 [30] train-rmse:0.336374 valid-rmse:0.386137 [39] train-rmse:0.330291 valid-rmse:0.381856 Iteration No: 545 ended. Search finished for the next optimal point. Time taken: 38.3292 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 546 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 210, 'eta': 0.18972596081177237, 'colsample_bytree': 1.0, 'max_depth': 54, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86771 valid-rmse:4.88526 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.691811 valid-rmse:0.724003 [20] train-rmse:0.348667 valid-rmse:0.397401 [30] train-rmse:0.334559 valid-rmse:0.384595 [39] train-rmse:0.331835 valid-rmse:0.382692 Iteration No: 546 ended. Search finished for the next optimal point. Time taken: 43.7759 Function value obtained: 0.3827 Current minimum: 0.3798 Iteration No: 547 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 139, 'eta': 0.17660107369991623, 'colsample_bytree': 0.71848710437268282, 'max_depth': 68, 'subsample': 1.0, 'lambda': 24.120056655292302, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94908 valid-rmse:4.967 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.813505 valid-rmse:0.843194 [20] train-rmse:0.368501 valid-rmse:0.414619 [30] train-rmse:0.337501 valid-rmse:0.386396 [39] train-rmse:0.331072 valid-rmse:0.381516 Iteration No: 547 ended. Search finished for the next optimal point. Time taken: 34.3302 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 548 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 43.70238737312723, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21655 valid-rmse:4.235 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.387522 valid-rmse:0.432023 [20] train-rmse:0.342347 valid-rmse:0.389016 [30] train-rmse:0.335271 valid-rmse:0.384092 [39] train-rmse:0.332274 valid-rmse:0.382243 Iteration No: 548 ended. Search finished for the next optimal point. Time taken: 42.2067 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 549 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 125, 'eta': 0.24177955050431649, 'colsample_bytree': 1.0, 'max_depth': 87, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56403 valid-rmse:4.58225 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.485443 valid-rmse:0.525758 [20] train-rmse:0.346667 valid-rmse:0.394147 [30] train-rmse:0.334608 valid-rmse:0.38432 [39] train-rmse:0.329812 valid-rmse:0.381371 Iteration No: 549 ended. Search finished for the next optimal point. Time taken: 39.8114 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 550 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 299, 'eta': 0.2987767422483103, 'colsample_bytree': 0.85198996246801773, 'max_depth': 38, 'subsample': 0.88422090696085198, 'lambda': 77.510227859528285, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22644 valid-rmse:4.24493 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.396038 valid-rmse:0.439981 [20] train-rmse:0.345824 valid-rmse:0.391527 [30] train-rmse:0.337582 valid-rmse:0.385216 [39] train-rmse:0.334143 valid-rmse:0.382854 Iteration No: 550 ended. Search finished for the next optimal point. Time taken: 35.7824 Function value obtained: 0.3829 Current minimum: 0.3798 Iteration No: 551 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.40000000000000002, 'max_depth': 63, 'subsample': 1.0, 'lambda': 58.802692801944652, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21784 valid-rmse:4.23625 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.401217 valid-rmse:0.444538 [20] train-rmse:0.349593 valid-rmse:0.395659 [30] train-rmse:0.339036 valid-rmse:0.386873 [39] train-rmse:0.334882 valid-rmse:0.384189 Iteration No: 551 ended. Search finished for the next optimal point. Time taken: 28.7405 Function value obtained: 0.3842 Current minimum: 0.3798 Iteration No: 552 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 28, 'eta': 0.17650017933373918, 'colsample_bytree': 0.43773182278025724, 'max_depth': 145, 'subsample': 0.97815151212808371, 'lambda': 89.685990744676332, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95177 valid-rmse:4.97 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.827184 valid-rmse:0.858049 [20] train-rmse:0.381337 valid-rmse:0.427975 [30] train-rmse:0.34151 valid-rmse:0.391824 [39] train-rmse:0.331915 valid-rmse:0.384425 Iteration No: 552 ended. Search finished for the next optimal point. Time taken: 31.0598 Function value obtained: 0.3844 Current minimum: 0.3798 Iteration No: 553 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.17395580920148579, 'colsample_bytree': 1.0, 'max_depth': 134, 'subsample': 1.0, 'lambda': 27.573835875698663, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96475 valid-rmse:4.98273 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.836042 valid-rmse:0.865527 [20] train-rmse:0.371418 valid-rmse:0.417824 [30] train-rmse:0.337864 valid-rmse:0.386701 [39] train-rmse:0.331074 valid-rmse:0.381489 Iteration No: 553 ended. Search finished for the next optimal point. Time taken: 36.4577 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 554 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 135, 'eta': 0.17370380513256511, 'colsample_bytree': 1.0, 'max_depth': 134, 'subsample': 1.0, 'lambda': 26.906213659742114, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96622 valid-rmse:4.9842 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.838068 valid-rmse:0.867473 [20] train-rmse:0.372017 valid-rmse:0.418225 [30] train-rmse:0.3381 valid-rmse:0.38677 [39] train-rmse:0.331405 valid-rmse:0.381771 Iteration No: 554 ended. Search finished for the next optimal point. Time taken: 38.7014 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 555 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 215, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 84, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21883 valid-rmse:4.2372 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.392183 valid-rmse:0.436621 [20] train-rmse:0.343262 valid-rmse:0.390464 [30] train-rmse:0.334879 valid-rmse:0.384384 [39] train-rmse:0.331577 valid-rmse:0.382589 Iteration No: 555 ended. Search finished for the next optimal point. Time taken: 39.6212 Function value obtained: 0.3826 Current minimum: 0.3798 Iteration No: 556 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.24933274934075542, 'colsample_bytree': 0.89407814365952931, 'max_depth': 154, 'subsample': 0.81590745093774109, 'lambda': 0.81703747312211494, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.51365 valid-rmse:4.53138 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.439436 valid-rmse:0.48141 [20] train-rmse:0.340898 valid-rmse:0.388142 [30] train-rmse:0.335509 valid-rmse:0.383606 [39] train-rmse:0.333198 valid-rmse:0.382283 Iteration No: 556 ended. Search finished for the next optimal point. Time taken: 39.8908 Function value obtained: 0.3823 Current minimum: 0.3798 Iteration No: 557 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 106, 'eta': 0.21969826716517832, 'colsample_bytree': 1.0, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.69505 valid-rmse:4.71324 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.56042 valid-rmse:0.597927 [20] train-rmse:0.351766 valid-rmse:0.399517 [30] train-rmse:0.336427 valid-rmse:0.38618 [39] train-rmse:0.330458 valid-rmse:0.38187 Iteration No: 557 ended. Search finished for the next optimal point. Time taken: 39.4236 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 558 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24246653262305207, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 38.841828057912238, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55799 valid-rmse:4.57629 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.476717 valid-rmse:0.516937 [20] train-rmse:0.34683 valid-rmse:0.392922 [30] train-rmse:0.336817 valid-rmse:0.384562 [39] train-rmse:0.333 valid-rmse:0.381931 Iteration No: 558 ended. Search finished for the next optimal point. Time taken: 39.0970 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 559 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.18532285927798359, 'colsample_bytree': 0.70528461529584519, 'max_depth': 61, 'subsample': 1.0, 'lambda': 20.523850644995225, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89705 valid-rmse:4.91499 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.744234 valid-rmse:0.775488 [20] train-rmse:0.360439 valid-rmse:0.406727 [30] train-rmse:0.336214 valid-rmse:0.384482 [39] train-rmse:0.330827 valid-rmse:0.380756 Iteration No: 559 ended. Search finished for the next optimal point. Time taken: 35.3011 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 560 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.18522952363530953, 'colsample_bytree': 0.70610942014222355, 'max_depth': 61, 'subsample': 1.0, 'lambda': 20.667316791448126, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89762 valid-rmse:4.91555 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.744952 valid-rmse:0.776198 [20] train-rmse:0.360436 valid-rmse:0.40685 [30] train-rmse:0.336299 valid-rmse:0.384797 [39] train-rmse:0.330928 valid-rmse:0.381091 Iteration No: 560 ended. Search finished for the next optimal point. Time taken: 36.9932 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 561 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 159, 'eta': 0.18444045836738429, 'colsample_bytree': 0.70671005485786131, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.064336373994138, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90233 valid-rmse:4.92026 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.750416 valid-rmse:0.781461 [20] train-rmse:0.361142 valid-rmse:0.407646 [30] train-rmse:0.336436 valid-rmse:0.385149 [39] train-rmse:0.330844 valid-rmse:0.381075 Iteration No: 561 ended. Search finished for the next optimal point. Time taken: 37.4248 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 562 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.17874532626841461, 'colsample_bytree': 0.60789387003767836, 'max_depth': 68, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93404 valid-rmse:4.95158 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.775834 valid-rmse:0.806298 [20] train-rmse:0.354628 valid-rmse:0.403243 [30] train-rmse:0.334345 valid-rmse:0.384771 [39] train-rmse:0.330666 valid-rmse:0.382223 Iteration No: 562 ended. Search finished for the next optimal point. Time taken: 37.0190 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 563 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 127, 'eta': 0.17590747629417439, 'colsample_bytree': 0.73712269977069766, 'max_depth': 69, 'subsample': 1.0, 'lambda': 27.480787876517901, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95334 valid-rmse:4.97124 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.820014 valid-rmse:0.849852 [20] train-rmse:0.3703 valid-rmse:0.41661 [30] train-rmse:0.338009 valid-rmse:0.38701 [39] train-rmse:0.330675 valid-rmse:0.381464 Iteration No: 563 ended. Search finished for the next optimal point. Time taken: 34.8076 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 564 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 222, 'eta': 0.1975085487468643, 'colsample_bytree': 1.0, 'max_depth': 63, 'subsample': 1.0, 'lambda': 39.10700125873786, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.82519 valid-rmse:4.8434 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.666129 valid-rmse:0.69997 [20] train-rmse:0.357345 valid-rmse:0.403968 [30] train-rmse:0.338311 valid-rmse:0.386232 [39] train-rmse:0.332633 valid-rmse:0.381926 Iteration No: 564 ended. Search finished for the next optimal point. Time taken: 37.0506 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 565 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.18695070158523758, 'colsample_bytree': 1.0, 'max_depth': 68, 'subsample': 1.0, 'lambda': 52.414757646584597, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88835 valid-rmse:4.90655 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.737518 valid-rmse:0.769513 [20] train-rmse:0.363864 valid-rmse:0.410625 [30] train-rmse:0.338274 valid-rmse:0.38685 [39] train-rmse:0.331742 valid-rmse:0.382045 Iteration No: 565 ended. Search finished for the next optimal point. Time taken: 38.9199 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 566 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 137, 'eta': 0.27615229978006584, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.36016 valid-rmse:4.37845 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.417611 valid-rmse:0.461075 [20] train-rmse:0.342939 valid-rmse:0.390739 [30] train-rmse:0.333032 valid-rmse:0.383351 [39] train-rmse:0.329439 valid-rmse:0.381577 Iteration No: 566 ended. Search finished for the next optimal point. Time taken: 40.9922 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 567 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.27591920376610468, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.36154 valid-rmse:4.37983 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.417448 valid-rmse:0.460975 [20] train-rmse:0.342606 valid-rmse:0.390485 [30] train-rmse:0.333147 valid-rmse:0.383348 [39] train-rmse:0.329701 valid-rmse:0.381785 Iteration No: 567 ended. Search finished for the next optimal point. Time taken: 41.2369 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 568 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 217, 'eta': 0.22462737851677522, 'colsample_bytree': 1.0, 'max_depth': 163, 'subsample': 1.0, 'lambda': 52.655556988554366, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.66448 valid-rmse:4.68274 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.536745 valid-rmse:0.574785 [20] train-rmse:0.349236 valid-rmse:0.395958 [30] train-rmse:0.33664 valid-rmse:0.384886 [39] train-rmse:0.332067 valid-rmse:0.381904 Iteration No: 568 ended. Search finished for the next optimal point. Time taken: 39.1023 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 569 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 120, 'eta': 0.26359458485902093, 'colsample_bytree': 1.0, 'max_depth': 72, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43462 valid-rmse:4.45289 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.436336 valid-rmse:0.479295 [20] train-rmse:0.34365 valid-rmse:0.392048 [30] train-rmse:0.332998 valid-rmse:0.383628 [39] train-rmse:0.328746 valid-rmse:0.381163 Iteration No: 569 ended. Search finished for the next optimal point. Time taken: 41.5434 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 570 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 16, 'eta': 0.15807035236539915, 'colsample_bytree': 0.78485815642242307, 'max_depth': 63, 'subsample': 0.94753805152478787, 'lambda': 1.8139938085875833, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.05759 valid-rmse:5.07538 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.978218 valid-rmse:1.00557 [20] train-rmse:0.382976 valid-rmse:0.431941 [30] train-rmse:0.339012 valid-rmse:0.391049 [39] train-rmse:0.334044 valid-rmse:0.386743 Iteration No: 570 ended. Search finished for the next optimal point. Time taken: 42.0662 Function value obtained: 0.3867 Current minimum: 0.3798 Iteration No: 571 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 185, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 74, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21882 valid-rmse:4.23724 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391812 valid-rmse:0.436398 [20] train-rmse:0.342257 valid-rmse:0.390022 [30] train-rmse:0.333858 valid-rmse:0.384091 [39] train-rmse:0.33063 valid-rmse:0.382272 Iteration No: 571 ended. Search finished for the next optimal point. Time taken: 42.9671 Function value obtained: 0.3823 Current minimum: 0.3798 Iteration No: 572 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26629142058634259, 'colsample_bytree': 1.0, 'max_depth': 64, 'subsample': 1.0, 'lambda': 38.96482146050559, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41647 valid-rmse:4.43482 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.426197 valid-rmse:0.469172 [20] train-rmse:0.344373 valid-rmse:0.390977 [30] train-rmse:0.335973 valid-rmse:0.384219 [39] train-rmse:0.332157 valid-rmse:0.381851 Iteration No: 572 ended. Search finished for the next optimal point. Time taken: 44.1912 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 573 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.18077537457617249, 'colsample_bytree': 1.0, 'max_depth': 171, 'subsample': 1.0, 'lambda': 31.687521134946259, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92437 valid-rmse:4.94235 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.780557 valid-rmse:0.811231 [20] train-rmse:0.365659 valid-rmse:0.411876 [30] train-rmse:0.337582 valid-rmse:0.386078 [39] train-rmse:0.331244 valid-rmse:0.381367 Iteration No: 573 ended. Search finished for the next optimal point. Time taken: 39.7470 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 574 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26709226798362695, 'colsample_bytree': 1.0, 'max_depth': 171, 'subsample': 1.0, 'lambda': 38.878892703937652, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41171 valid-rmse:4.43007 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.4245 valid-rmse:0.467574 [20] train-rmse:0.34401 valid-rmse:0.390836 [30] train-rmse:0.33599 valid-rmse:0.384334 [39] train-rmse:0.332261 valid-rmse:0.381938 Iteration No: 574 ended. Search finished for the next optimal point. Time taken: 41.1416 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 575 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 26, 'eta': 0.24140965042701559, 'colsample_bytree': 0.7501298963291918, 'max_depth': 46, 'subsample': 0.8432346527018143, 'lambda': 88.972910551936025, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56698 valid-rmse:4.58532 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.487784 valid-rmse:0.528606 [20] train-rmse:0.352366 valid-rmse:0.399448 [30] train-rmse:0.342843 valid-rmse:0.390184 [39] train-rmse:0.338718 valid-rmse:0.386929 Iteration No: 575 ended. Search finished for the next optimal point. Time taken: 36.6980 Function value obtained: 0.3869 Current minimum: 0.3798 Iteration No: 576 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 163, 'eta': 0.1629277668435159, 'colsample_bytree': 1.0, 'max_depth': 124, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02761 valid-rmse:5.04519 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.919892 valid-rmse:0.947474 [20] train-rmse:0.37008 valid-rmse:0.418118 [30] train-rmse:0.334199 valid-rmse:0.385246 [39] train-rmse:0.330026 valid-rmse:0.38212 Iteration No: 576 ended. Search finished for the next optimal point. Time taken: 44.5463 Function value obtained: 0.3821 Current minimum: 0.3798 Iteration No: 577 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 184, 'eta': 0.26155112883693932, 'colsample_bytree': 0.7191534547843792, 'max_depth': 81, 'subsample': 1.0, 'lambda': 62.565996659023746, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44598 valid-rmse:4.46423 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.438348 valid-rmse:0.48038 [20] train-rmse:0.344279 valid-rmse:0.391082 [30] train-rmse:0.334569 valid-rmse:0.383442 [39] train-rmse:0.330613 valid-rmse:0.381373 Iteration No: 577 ended. Search finished for the next optimal point. Time taken: 36.5138 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 578 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 289, 'eta': 0.14285392882336889, 'colsample_bytree': 0.40030326865882893, 'max_depth': 198, 'subsample': 0.80016162587898021, 'lambda': 0.97062223526072, 'gamma': 1, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.14872 valid-rmse:5.1666 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:1.1678 valid-rmse:1.19215 [20] train-rmse:0.433274 valid-rmse:0.475428 [30] train-rmse:0.352627 valid-rmse:0.398816 [39] train-rmse:0.343246 valid-rmse:0.389608 Iteration No: 578 ended. Search finished for the next optimal point. Time taken: 30.9137 Function value obtained: 0.3896 Current minimum: 0.3798 Iteration No: 579 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 120, 'eta': 0.17552928267312873, 'colsample_bytree': 0.71192732664842151, 'max_depth': 69, 'subsample': 1.0, 'lambda': 25.43803462244782, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95552 valid-rmse:4.97344 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.822912 valid-rmse:0.852629 [20] train-rmse:0.36961 valid-rmse:0.416088 [30] train-rmse:0.33696 valid-rmse:0.386052 [39] train-rmse:0.329597 valid-rmse:0.380622 Iteration No: 579 ended. Search finished for the next optimal point. Time taken: 35.1779 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 580 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 33, 'eta': 0.18232567276902539, 'colsample_bytree': 0.40138809977082557, 'max_depth': 153, 'subsample': 0.87068459593080649, 'lambda': 1.7187773888002711, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91358 valid-rmse:4.9314 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.756799 valid-rmse:0.788169 [20] train-rmse:0.353537 valid-rmse:0.406286 [30] train-rmse:0.329898 valid-rmse:0.387257 [39] train-rmse:0.325641 valid-rmse:0.385535 Iteration No: 580 ended. Search finished for the next optimal point. Time taken: 35.7384 Function value obtained: 0.3855 Current minimum: 0.3798 Iteration No: 581 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 123, 'eta': 0.17453897060295701, 'colsample_bytree': 0.7206890040381928, 'max_depth': 71, 'subsample': 1.0, 'lambda': 25.076878093712267, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9614 valid-rmse:4.97932 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.83156 valid-rmse:0.861259 [20] train-rmse:0.370872 valid-rmse:0.41742 [30] train-rmse:0.3369 valid-rmse:0.386286 [39] train-rmse:0.330026 valid-rmse:0.381217 Iteration No: 581 ended. Search finished for the next optimal point. Time taken: 36.2547 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 582 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.27125246318615248, 'colsample_bytree': 0.7435032349015549, 'max_depth': 77, 'subsample': 1.0, 'lambda': 39.631640031938176, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3873 valid-rmse:4.40561 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419585 valid-rmse:0.462498 [20] train-rmse:0.344721 valid-rmse:0.391117 [30] train-rmse:0.33604 valid-rmse:0.384272 [39] train-rmse:0.332747 valid-rmse:0.382195 Iteration No: 582 ended. Search finished for the next optimal point. Time taken: 37.0432 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 583 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 200, 'eta': 0.2078117410464298, 'colsample_bytree': 1.0, 'max_depth': 167, 'subsample': 1.0, 'lambda': 46.656391819885144, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.76419 valid-rmse:4.78242 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.609159 valid-rmse:0.644302 [20] train-rmse:0.352793 valid-rmse:0.39925 [30] train-rmse:0.337023 valid-rmse:0.385052 [39] train-rmse:0.332139 valid-rmse:0.381576 Iteration No: 583 ended. Search finished for the next optimal point. Time taken: 39.2767 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 584 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 113, 'eta': 0.2613569942179117, 'colsample_bytree': 1.0, 'max_depth': 74, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4479 valid-rmse:4.46616 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.44115 valid-rmse:0.483819 [20] train-rmse:0.343691 valid-rmse:0.391822 [30] train-rmse:0.333409 valid-rmse:0.383777 [39] train-rmse:0.328955 valid-rmse:0.38125 Iteration No: 584 ended. Search finished for the next optimal point. Time taken: 41.1275 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 585 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 137, 'eta': 0.27609208992817369, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.36051 valid-rmse:4.37881 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.417704 valid-rmse:0.46117 [20] train-rmse:0.343523 valid-rmse:0.391251 [30] train-rmse:0.333668 valid-rmse:0.383956 [39] train-rmse:0.329686 valid-rmse:0.382085 Iteration No: 585 ended. Search finished for the next optimal point. Time taken: 42.9348 Function value obtained: 0.3821 Current minimum: 0.3798 Iteration No: 586 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 150, 'eta': 0.16237841898400857, 'colsample_bytree': 1.0, 'max_depth': 102, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.03213 valid-rmse:5.04972 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.926068 valid-rmse:0.953353 [20] train-rmse:0.371024 valid-rmse:0.419196 [30] train-rmse:0.334816 valid-rmse:0.385935 [39] train-rmse:0.330431 valid-rmse:0.382666 Iteration No: 586 ended. Search finished for the next optimal point. Time taken: 46.2135 Function value obtained: 0.3827 Current minimum: 0.3798 Iteration No: 587 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 124, 'eta': 0.17698597136976185, 'colsample_bytree': 0.70559691407616565, 'max_depth': 67, 'subsample': 1.0, 'lambda': 25.443367516805491, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94686 valid-rmse:4.96478 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.810638 valid-rmse:0.84064 [20] train-rmse:0.36784 valid-rmse:0.414586 [30] train-rmse:0.33672 valid-rmse:0.385995 [39] train-rmse:0.330011 valid-rmse:0.38097 Iteration No: 587 ended. Search finished for the next optimal point. Time taken: 36.6826 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 588 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 159, 'eta': 0.18716564740431033, 'colsample_bytree': 0.70694794896008328, 'max_depth': 60, 'subsample': 1.0, 'lambda': 21.513601167498987, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88614 valid-rmse:4.90407 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.730898 valid-rmse:0.762548 [20] train-rmse:0.359387 valid-rmse:0.405983 [30] train-rmse:0.336028 valid-rmse:0.384656 [39] train-rmse:0.330599 valid-rmse:0.380759 Iteration No: 588 ended. Search finished for the next optimal point. Time taken: 36.8024 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 589 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.20196555556915324, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 56.628625966467851, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.79925 valid-rmse:4.81747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.643253 valid-rmse:0.677567 [20] train-rmse:0.35613 valid-rmse:0.402728 [30] train-rmse:0.337265 valid-rmse:0.385626 [39] train-rmse:0.331701 valid-rmse:0.381713 Iteration No: 589 ended. Search finished for the next optimal point. Time taken: 39.9520 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 590 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 144, 'eta': 0.18301015987653241, 'colsample_bytree': 0.74292927472771186, 'max_depth': 64, 'subsample': 0.80000000000000004, 'lambda': 26.169889658111806, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91132 valid-rmse:4.92934 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.764434 valid-rmse:0.795251 [20] train-rmse:0.365519 valid-rmse:0.411828 [30] train-rmse:0.338624 valid-rmse:0.386899 [39] train-rmse:0.333144 valid-rmse:0.382862 Iteration No: 590 ended. Search finished for the next optimal point. Time taken: 35.8486 Function value obtained: 0.3829 Current minimum: 0.3798 Iteration No: 591 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26607298033633164, 'colsample_bytree': 1.0, 'max_depth': 80, 'subsample': 1.0, 'lambda': 56.273983463427449, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4185 valid-rmse:4.43685 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.429311 valid-rmse:0.472053 [20] train-rmse:0.344904 valid-rmse:0.391127 [30] train-rmse:0.336237 valid-rmse:0.383887 [39] train-rmse:0.33276 valid-rmse:0.381568 Iteration No: 591 ended. Search finished for the next optimal point. Time taken: 41.7417 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 592 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 174, 'eta': 0.25817810727666546, 'colsample_bytree': 0.73228807427598519, 'max_depth': 82, 'subsample': 1.0, 'lambda': 64.199104148509491, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.46605 valid-rmse:4.4843 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.444456 valid-rmse:0.48633 [20] train-rmse:0.344681 valid-rmse:0.391572 [30] train-rmse:0.334316 valid-rmse:0.383342 [39] train-rmse:0.33059 valid-rmse:0.381366 Iteration No: 592 ended. Search finished for the next optimal point. Time taken: 39.2307 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 593 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 122, 'eta': 0.17393800774217905, 'colsample_bytree': 0.72209624802300054, 'max_depth': 72, 'subsample': 1.0, 'lambda': 24.867182854706101, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96496 valid-rmse:4.98288 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.836541 valid-rmse:0.866126 [20] train-rmse:0.371472 valid-rmse:0.417875 [30] train-rmse:0.3374 valid-rmse:0.386229 [39] train-rmse:0.3304 valid-rmse:0.381086 Iteration No: 593 ended. Search finished for the next optimal point. Time taken: 38.3115 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 594 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.1774816380810201, 'colsample_bytree': 0.58979218578928183, 'max_depth': 69, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94092 valid-rmse:4.95843 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.784521 valid-rmse:0.814547 [20] train-rmse:0.353386 valid-rmse:0.402092 [30] train-rmse:0.331935 valid-rmse:0.382586 [39] train-rmse:0.328464 valid-rmse:0.380344 Iteration No: 594 ended. Search finished for the next optimal point. Time taken: 39.2763 Function value obtained: 0.3803 Current minimum: 0.3798 Iteration No: 595 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 296, 'eta': 0.29822276232506917, 'colsample_bytree': 0.99480375205715799, 'max_depth': 50, 'subsample': 0.90339661698207474, 'lambda': 86.698574604006112, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22954 valid-rmse:4.2479 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.397512 valid-rmse:0.441261 [20] train-rmse:0.349154 valid-rmse:0.394338 [30] train-rmse:0.34287 valid-rmse:0.388848 [39] train-rmse:0.339342 valid-rmse:0.385793 Iteration No: 595 ended. Search finished for the next optimal point. Time taken: 39.2732 Function value obtained: 0.3858 Current minimum: 0.3798 Iteration No: 596 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 126, 'eta': 0.17421700751964742, 'colsample_bytree': 0.70999112568041811, 'max_depth': 72, 'subsample': 1.0, 'lambda': 23.030923558080161, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96323 valid-rmse:4.98115 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.833761 valid-rmse:0.863165 [20] train-rmse:0.370302 valid-rmse:0.416523 [30] train-rmse:0.336689 valid-rmse:0.385582 [39] train-rmse:0.330033 valid-rmse:0.380602 Iteration No: 596 ended. Search finished for the next optimal point. Time taken: 37.6230 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 597 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.17754609276865024, 'colsample_bytree': 0.59296555584138355, 'max_depth': 69, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94054 valid-rmse:4.95805 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.784387 valid-rmse:0.814282 [20] train-rmse:0.35361 valid-rmse:0.402205 [30] train-rmse:0.332209 valid-rmse:0.382608 [39] train-rmse:0.328543 valid-rmse:0.380236 Iteration No: 597 ended. Search finished for the next optimal point. Time taken: 39.7973 Function value obtained: 0.3802 Current minimum: 0.3798 Iteration No: 598 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 109, 'eta': 0.26013943446498722, 'colsample_bytree': 1.0, 'max_depth': 75, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.45512 valid-rmse:4.47338 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.443309 valid-rmse:0.485988 [20] train-rmse:0.343343 valid-rmse:0.391592 [30] train-rmse:0.333027 valid-rmse:0.38368 [39] train-rmse:0.328749 valid-rmse:0.381567 Iteration No: 598 ended. Search finished for the next optimal point. Time taken: 44.2576 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 599 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 147, 'eta': 0.17840174140600981, 'colsample_bytree': 1.0, 'max_depth': 173, 'subsample': 1.0, 'lambda': 29.632977358864274, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93841 valid-rmse:4.95639 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.799307 valid-rmse:0.829483 [20] train-rmse:0.367769 valid-rmse:0.414036 [30] train-rmse:0.338133 valid-rmse:0.38658 [39] train-rmse:0.331655 valid-rmse:0.381882 Iteration No: 599 ended. Search finished for the next optimal point. Time taken: 41.2137 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 600 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.16878548110353708, 'colsample_bytree': 1.0, 'max_depth': 166, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99267 valid-rmse:5.0102 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.862484 valid-rmse:0.890879 [20] train-rmse:0.363033 valid-rmse:0.411244 [30] train-rmse:0.334582 valid-rmse:0.385241 [39] train-rmse:0.330226 valid-rmse:0.381988 Iteration No: 600 ended. Search finished for the next optimal point. Time taken: 47.8674 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 601 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.16479843579552511, 'colsample_bytree': 1.0, 'max_depth': 87, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01642 valid-rmse:5.03404 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.900245 valid-rmse:0.927893 [20] train-rmse:0.36659 valid-rmse:0.4153 [30] train-rmse:0.333866 valid-rmse:0.385511 [39] train-rmse:0.329388 valid-rmse:0.382136 Iteration No: 601 ended. Search finished for the next optimal point. Time taken: 48.4423 Function value obtained: 0.3821 Current minimum: 0.3798 Iteration No: 602 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 158, 'eta': 0.19173021010820224, 'colsample_bytree': 0.40000000000000002, 'max_depth': 50, 'subsample': 1.0, 'lambda': 31.570382739256388, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85951 valid-rmse:4.8774 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.707846 valid-rmse:0.740353 [20] train-rmse:0.365212 valid-rmse:0.411034 [30] train-rmse:0.34014 valid-rmse:0.38803 [39] train-rmse:0.333329 valid-rmse:0.382736 Iteration No: 602 ended. Search finished for the next optimal point. Time taken: 32.9508 Function value obtained: 0.3827 Current minimum: 0.3798 Iteration No: 603 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 192, 'eta': 0.2457040103428664, 'colsample_bytree': 0.40000000000000002, 'max_depth': 67, 'subsample': 1.0, 'lambda': 59.07670303731814, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.53997 valid-rmse:4.55825 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.480349 valid-rmse:0.52081 [20] train-rmse:0.353054 valid-rmse:0.399247 [30] train-rmse:0.338983 valid-rmse:0.387158 [39] train-rmse:0.333477 valid-rmse:0.383321 Iteration No: 603 ended. Search finished for the next optimal point. Time taken: 33.3621 Function value obtained: 0.3833 Current minimum: 0.3798 Iteration No: 604 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 213, 'eta': 0.23324154313004561, 'colsample_bytree': 1.0, 'max_depth': 165, 'subsample': 1.0, 'lambda': 58.439501854282597, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.61353 valid-rmse:4.63181 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.506986 valid-rmse:0.546186 [20] train-rmse:0.348462 valid-rmse:0.395523 [30] train-rmse:0.336633 valid-rmse:0.385485 [39] train-rmse:0.332306 valid-rmse:0.382656 Iteration No: 604 ended. Search finished for the next optimal point. Time taken: 42.3102 Function value obtained: 0.3827 Current minimum: 0.3798 Iteration No: 605 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 90, 'eta': 0.17925784128783767, 'colsample_bytree': 1.0, 'max_depth': 57, 'subsample': 1.0, 'lambda': 34.269889009193221, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93351 valid-rmse:4.95167 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.793608 valid-rmse:0.824568 [20] train-rmse:0.36637 valid-rmse:0.414068 [30] train-rmse:0.335571 valid-rmse:0.386386 [39] train-rmse:0.328848 valid-rmse:0.382008 Iteration No: 605 ended. Search finished for the next optimal point. Time taken: 42.0107 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 606 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 192, 'eta': 0.18473317853403992, 'colsample_bytree': 1.0, 'max_depth': 57, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89749 valid-rmse:4.91502 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.727071 valid-rmse:0.75859 [20] train-rmse:0.349941 valid-rmse:0.398687 [30] train-rmse:0.333728 valid-rmse:0.383993 [39] train-rmse:0.330667 valid-rmse:0.382074 Iteration No: 606 ended. Search finished for the next optimal point. Time taken: 47.0698 Function value obtained: 0.3821 Current minimum: 0.3798 Iteration No: 607 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 113, 'eta': 0.17213853670105245, 'colsample_bytree': 0.40000000000000002, 'max_depth': 75, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97301 valid-rmse:4.99057 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.834564 valid-rmse:0.863646 [20] train-rmse:0.361703 valid-rmse:0.410849 [30] train-rmse:0.334081 valid-rmse:0.385823 [39] train-rmse:0.329085 valid-rmse:0.382217 Iteration No: 607 ended. Search finished for the next optimal point. Time taken: 36.3074 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 608 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.27155387482128934, 'colsample_bytree': 1.0, 'max_depth': 90, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38746 valid-rmse:4.40581 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.423671 valid-rmse:0.467021 [20] train-rmse:0.344645 valid-rmse:0.391677 [30] train-rmse:0.334745 valid-rmse:0.383791 [39] train-rmse:0.331027 valid-rmse:0.381855 Iteration No: 608 ended. Search finished for the next optimal point. Time taken: 43.3336 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 609 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 174, 'eta': 0.1886820917520734, 'colsample_bytree': 0.72272679042692312, 'max_depth': 62, 'subsample': 1.0, 'lambda': 17.085374649246887, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87687 valid-rmse:4.8948 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.718413 valid-rmse:0.750238 [20] train-rmse:0.357531 valid-rmse:0.404296 [30] train-rmse:0.336008 valid-rmse:0.384835 [39] train-rmse:0.330932 valid-rmse:0.381402 Iteration No: 609 ended. Search finished for the next optimal point. Time taken: 40.0859 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 610 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.17293578686928388, 'colsample_bytree': 0.7386489473052601, 'max_depth': 76, 'subsample': 1.0, 'lambda': 23.554430867147016, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97087 valid-rmse:4.98879 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.845256 valid-rmse:0.874615 [20] train-rmse:0.372565 valid-rmse:0.418697 [30] train-rmse:0.33732 valid-rmse:0.38633 [39] train-rmse:0.330411 valid-rmse:0.38124 Iteration No: 610 ended. Search finished for the next optimal point. Time taken: 39.1448 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 611 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 125, 'eta': 0.23673128155690082, 'colsample_bytree': 1.0, 'max_depth': 85, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59398 valid-rmse:4.61219 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.499697 valid-rmse:0.539377 [20] train-rmse:0.348553 valid-rmse:0.395722 [30] train-rmse:0.335976 valid-rmse:0.385311 [39] train-rmse:0.330603 valid-rmse:0.381667 Iteration No: 611 ended. Search finished for the next optimal point. Time taken: 42.2975 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 612 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.16416278515033186, 'colsample_bytree': 1.0, 'max_depth': 131, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02025 valid-rmse:5.0378 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.907389 valid-rmse:0.93505 [20] train-rmse:0.368844 valid-rmse:0.41688 [30] train-rmse:0.33492 valid-rmse:0.38548 [39] train-rmse:0.33078 valid-rmse:0.382366 Iteration No: 612 ended. Search finished for the next optimal point. Time taken: 47.1311 Function value obtained: 0.3824 Current minimum: 0.3798 Iteration No: 613 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 72, 'eta': 0.21598084972339532, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.71711 valid-rmse:4.73529 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.577004 valid-rmse:0.614094 [20] train-rmse:0.351299 valid-rmse:0.399607 [30] train-rmse:0.334696 valid-rmse:0.385466 [39] train-rmse:0.328844 valid-rmse:0.381891 Iteration No: 613 ended. Search finished for the next optimal point. Time taken: 44.1146 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 614 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 169, 'eta': 0.1798624313563654, 'colsample_bytree': 0.63412620117277285, 'max_depth': 68, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92659 valid-rmse:4.94413 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.764986 valid-rmse:0.795409 [20] train-rmse:0.35205 valid-rmse:0.400845 [30] train-rmse:0.332324 valid-rmse:0.382802 [39] train-rmse:0.328775 valid-rmse:0.380772 Iteration No: 614 ended. Search finished for the next optimal point. Time taken: 41.5332 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 615 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.1799431403567045, 'colsample_bytree': 0.63531497778592061, 'max_depth': 68, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92612 valid-rmse:4.94365 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.76489 valid-rmse:0.795199 [20] train-rmse:0.352305 valid-rmse:0.400869 [30] train-rmse:0.33291 valid-rmse:0.383221 [39] train-rmse:0.329094 valid-rmse:0.38058 Iteration No: 615 ended. Search finished for the next optimal point. Time taken: 42.0107 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 616 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 75, 'eta': 0.26508982316864149, 'colsample_bytree': 0.68055160863448749, 'max_depth': 93, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42612 valid-rmse:4.4444 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.436119 valid-rmse:0.478987 [20] train-rmse:0.343277 valid-rmse:0.39183 [30] train-rmse:0.331989 valid-rmse:0.383335 [39] train-rmse:0.327458 valid-rmse:0.381116 Iteration No: 616 ended. Search finished for the next optimal point. Time taken: 39.9828 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 617 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 70, 'eta': 0.25373864796616508, 'colsample_bytree': 1.0, 'max_depth': 79, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.49308 valid-rmse:4.51133 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.455347 valid-rmse:0.497848 [20] train-rmse:0.343744 valid-rmse:0.393139 [30] train-rmse:0.332635 valid-rmse:0.384785 [39] train-rmse:0.328071 valid-rmse:0.382487 Iteration No: 617 ended. Search finished for the next optimal point. Time taken: 46.8267 Function value obtained: 0.3825 Current minimum: 0.3798 Iteration No: 618 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 290, 'eta': 0.29624995693274281, 'colsample_bytree': 0.99047920459263861, 'max_depth': 117, 'subsample': 0.98986196989567576, 'lambda': 0.29044004466829032, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.23288 valid-rmse:4.25028 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.374813 valid-rmse:0.419622 [20] train-rmse:0.342827 valid-rmse:0.389243 [30] train-rmse:0.339693 valid-rmse:0.386699 [39] train-rmse:0.337951 valid-rmse:0.385407 Iteration No: 618 ended. Search finished for the next optimal point. Time taken: 46.1282 Function value obtained: 0.3854 Current minimum: 0.3798 Iteration No: 619 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.17350646843091569, 'colsample_bytree': 0.73180296147650159, 'max_depth': 75, 'subsample': 1.0, 'lambda': 22.69591366176099, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96744 valid-rmse:4.98536 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.839653 valid-rmse:0.869103 [20] train-rmse:0.371525 valid-rmse:0.417854 [30] train-rmse:0.336982 valid-rmse:0.386109 [39] train-rmse:0.330408 valid-rmse:0.381276 Iteration No: 619 ended. Search finished for the next optimal point. Time taken: 40.0154 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 620 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 173, 'eta': 0.19036346123782827, 'colsample_bytree': 0.73190437829783739, 'max_depth': 61, 'subsample': 1.0, 'lambda': 19.159526647429239, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86703 valid-rmse:4.88496 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.707357 valid-rmse:0.73937 [20] train-rmse:0.356989 valid-rmse:0.403861 [30] train-rmse:0.336009 valid-rmse:0.384625 [39] train-rmse:0.331009 valid-rmse:0.381159 Iteration No: 620 ended. Search finished for the next optimal point. Time taken: 40.7386 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 621 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 131, 'eta': 0.17351256448201277, 'colsample_bytree': 0.73314058928001502, 'max_depth': 75, 'subsample': 1.0, 'lambda': 22.843509493841044, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96741 valid-rmse:4.98533 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.839757 valid-rmse:0.869217 [20] train-rmse:0.371469 valid-rmse:0.417773 [30] train-rmse:0.337042 valid-rmse:0.38601 [39] train-rmse:0.330692 valid-rmse:0.381441 Iteration No: 621 ended. Search finished for the next optimal point. Time taken: 42.3158 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 622 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 46.822623530959241, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.2167 valid-rmse:4.23515 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.387089 valid-rmse:0.431648 [20] train-rmse:0.341902 valid-rmse:0.389004 [30] train-rmse:0.335342 valid-rmse:0.384197 [39] train-rmse:0.332319 valid-rmse:0.382472 Iteration No: 622 ended. Search finished for the next optimal point. Time taken: 45.6855 Function value obtained: 0.3825 Current minimum: 0.3798 Iteration No: 623 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 97, 'eta': 0.17955244781650087, 'colsample_bytree': 1.0, 'max_depth': 58, 'subsample': 1.0, 'lambda': 33.443774429974972, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93173 valid-rmse:4.9499 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.791138 valid-rmse:0.822127 [20] train-rmse:0.366096 valid-rmse:0.413905 [30] train-rmse:0.335823 valid-rmse:0.386533 [39] train-rmse:0.329537 valid-rmse:0.382136 Iteration No: 623 ended. Search finished for the next optimal point. Time taken: 45.3889 Function value obtained: 0.3821 Current minimum: 0.3798 Iteration No: 624 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.18027173720186052, 'colsample_bytree': 0.63410387289907899, 'max_depth': 68, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92416 valid-rmse:4.94169 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.762211 valid-rmse:0.792487 [20] train-rmse:0.352316 valid-rmse:0.40071 [30] train-rmse:0.332973 valid-rmse:0.383038 [39] train-rmse:0.329374 valid-rmse:0.380448 Iteration No: 624 ended. Search finished for the next optimal point. Time taken: 43.9705 Function value obtained: 0.3804 Current minimum: 0.3798 Iteration No: 625 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 176, 'eta': 0.19103878422867315, 'colsample_bytree': 0.733224824125839, 'max_depth': 61, 'subsample': 1.0, 'lambda': 18.58988022151253, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86299 valid-rmse:4.88091 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.702734 valid-rmse:0.735002 [20] train-rmse:0.356791 valid-rmse:0.403699 [30] train-rmse:0.335882 valid-rmse:0.38481 [39] train-rmse:0.330449 valid-rmse:0.380883 Iteration No: 625 ended. Search finished for the next optimal point. Time taken: 39.1457 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 626 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26685201796657043, 'colsample_bytree': 1.0, 'max_depth': 82, 'subsample': 1.0, 'lambda': 54.609800563652762, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4138 valid-rmse:4.43215 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.427463 valid-rmse:0.470436 [20] train-rmse:0.345033 valid-rmse:0.391186 [30] train-rmse:0.336485 valid-rmse:0.383974 [39] train-rmse:0.333203 valid-rmse:0.38193 Iteration No: 626 ended. Search finished for the next optimal point. Time taken: 45.2217 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 627 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.18015672579189046, 'colsample_bytree': 0.63468016983338127, 'max_depth': 68, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92484 valid-rmse:4.94238 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.762892 valid-rmse:0.793148 [20] train-rmse:0.352372 valid-rmse:0.400784 [30] train-rmse:0.333044 valid-rmse:0.383169 [39] train-rmse:0.329472 valid-rmse:0.380862 Iteration No: 627 ended. Search finished for the next optimal point. Time taken: 43.8845 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 628 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 176, 'eta': 0.19133038611065051, 'colsample_bytree': 0.7367945634694284, 'max_depth': 61, 'subsample': 1.0, 'lambda': 19.469488486856555, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8613 valid-rmse:4.87922 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.701039 valid-rmse:0.733508 [20] train-rmse:0.357135 valid-rmse:0.404079 [30] train-rmse:0.336347 valid-rmse:0.385102 [39] train-rmse:0.330882 valid-rmse:0.38126 Iteration No: 628 ended. Search finished for the next optimal point. Time taken: 39.7243 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 629 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 228, 'eta': 0.19880611812835769, 'colsample_bytree': 1.0, 'max_depth': 64, 'subsample': 1.0, 'lambda': 36.626600702925586, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8174 valid-rmse:4.83561 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.657908 valid-rmse:0.691907 [20] train-rmse:0.356926 valid-rmse:0.403481 [30] train-rmse:0.338177 valid-rmse:0.386193 [39] train-rmse:0.33293 valid-rmse:0.382192 Iteration No: 629 ended. Search finished for the next optimal point. Time taken: 42.9105 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 630 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 151, 'eta': 0.16547387106059855, 'colsample_bytree': 1.0, 'max_depth': 87, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.0124 valid-rmse:5.03003 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.89371 valid-rmse:0.921599 [20] train-rmse:0.365779 valid-rmse:0.414042 [30] train-rmse:0.333919 valid-rmse:0.384707 [39] train-rmse:0.329508 valid-rmse:0.381579 Iteration No: 630 ended. Search finished for the next optimal point. Time taken: 50.8500 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 631 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.16737685124075966, 'colsample_bytree': 1.0, 'max_depth': 169, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00106 valid-rmse:5.01864 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.876167 valid-rmse:0.9044 [20] train-rmse:0.364709 valid-rmse:0.413146 [30] train-rmse:0.334982 valid-rmse:0.385734 [39] train-rmse:0.330636 valid-rmse:0.382542 Iteration No: 631 ended. Search finished for the next optimal point. Time taken: 48.3013 Function value obtained: 0.3825 Current minimum: 0.3798 Iteration No: 632 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.18626423230025035, 'colsample_bytree': 1.0, 'max_depth': 173, 'subsample': 1.0, 'lambda': 39.358584649598356, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89205 valid-rmse:4.91024 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.740615 valid-rmse:0.772608 [20] train-rmse:0.362923 valid-rmse:0.409756 [30] train-rmse:0.337522 valid-rmse:0.386366 [39] train-rmse:0.33125 valid-rmse:0.381804 Iteration No: 632 ended. Search finished for the next optimal point. Time taken: 42.6779 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 633 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 119, 'eta': 0.24992617788763849, 'colsample_bytree': 1.0, 'max_depth': 138, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.5157 valid-rmse:4.53394 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.463684 valid-rmse:0.505146 [20] train-rmse:0.345898 valid-rmse:0.393521 [30] train-rmse:0.333995 valid-rmse:0.383854 [39] train-rmse:0.329398 valid-rmse:0.381167 Iteration No: 633 ended. Search finished for the next optimal point. Time taken: 46.7759 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 634 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.17220300662034282, 'colsample_bytree': 0.71760645977155613, 'max_depth': 78, 'subsample': 1.0, 'lambda': 19.765346547991893, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97509 valid-rmse:4.99301 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.850481 valid-rmse:0.879677 [20] train-rmse:0.371993 valid-rmse:0.418318 [30] train-rmse:0.336784 valid-rmse:0.385933 [39] train-rmse:0.330094 valid-rmse:0.380909 Iteration No: 634 ended. Search finished for the next optimal point. Time taken: 40.5310 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 635 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 147, 'eta': 0.24749936824021515, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.5301 valid-rmse:4.54835 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.471295 valid-rmse:0.51244 [20] train-rmse:0.347283 valid-rmse:0.395149 [30] train-rmse:0.33539 valid-rmse:0.385205 [39] train-rmse:0.33118 valid-rmse:0.382763 Iteration No: 635 ended. Search finished for the next optimal point. Time taken: 48.7384 Function value obtained: 0.3828 Current minimum: 0.3798 Iteration No: 636 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.17236135952280054, 'colsample_bytree': 0.61449674389484965, 'max_depth': 77, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97137 valid-rmse:4.98897 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.829512 valid-rmse:0.858577 [20] train-rmse:0.358025 valid-rmse:0.406382 [30] train-rmse:0.332754 valid-rmse:0.383402 [39] train-rmse:0.328734 valid-rmse:0.380602 Iteration No: 636 ended. Search finished for the next optimal point. Time taken: 43.5597 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 637 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.17272020963671422, 'colsample_bytree': 0.62378065018412743, 'max_depth': 77, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96923 valid-rmse:4.98681 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.826024 valid-rmse:0.855293 [20] train-rmse:0.357789 valid-rmse:0.406423 [30] train-rmse:0.332595 valid-rmse:0.383561 [39] train-rmse:0.328878 valid-rmse:0.381063 Iteration No: 637 ended. Search finished for the next optimal point. Time taken: 42.5342 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 638 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 47.324639030960959, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21673 valid-rmse:4.23517 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.387803 valid-rmse:0.432236 [20] train-rmse:0.341802 valid-rmse:0.388607 [30] train-rmse:0.33521 valid-rmse:0.383879 [39] train-rmse:0.332342 valid-rmse:0.382493 Iteration No: 638 ended. Search finished for the next optimal point. Time taken: 47.2507 Function value obtained: 0.3825 Current minimum: 0.3798 Iteration No: 639 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.17162702284554585, 'colsample_bytree': 0.61215280342802247, 'max_depth': 79, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97641 valid-rmse:4.99404 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.836029 valid-rmse:0.865204 [20] train-rmse:0.358974 valid-rmse:0.407477 [30] train-rmse:0.332736 valid-rmse:0.383408 [39] train-rmse:0.328992 valid-rmse:0.380774 Iteration No: 639 ended. Search finished for the next optimal point. Time taken: 45.1951 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 640 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26767635734243789, 'colsample_bytree': 1.0, 'max_depth': 170, 'subsample': 1.0, 'lambda': 38.305650143458251, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40822 valid-rmse:4.42657 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422425 valid-rmse:0.465245 [20] train-rmse:0.343592 valid-rmse:0.389629 [30] train-rmse:0.335453 valid-rmse:0.383161 [39] train-rmse:0.332191 valid-rmse:0.381152 Iteration No: 640 ended. Search finished for the next optimal point. Time taken: 48.7535 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 641 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.18984512773617163, 'colsample_bytree': 1.0, 'max_depth': 69, 'subsample': 1.0, 'lambda': 54.441665972775127, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87121 valid-rmse:4.88941 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.717916 valid-rmse:0.750146 [20] train-rmse:0.361631 valid-rmse:0.408418 [30] train-rmse:0.338055 valid-rmse:0.386663 [39] train-rmse:0.331525 valid-rmse:0.381745 Iteration No: 641 ended. Search finished for the next optimal point. Time taken: 46.5627 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 642 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 111, 'eta': 0.17179652301975112, 'colsample_bytree': 0.40000000000000002, 'max_depth': 76, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97506 valid-rmse:4.99261 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.83788 valid-rmse:0.867101 [20] train-rmse:0.362316 valid-rmse:0.411683 [30] train-rmse:0.334291 valid-rmse:0.386368 [39] train-rmse:0.329217 valid-rmse:0.382817 Iteration No: 642 ended. Search finished for the next optimal point. Time taken: 39.4841 Function value obtained: 0.3828 Current minimum: 0.3798 Iteration No: 643 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.17329642143710211, 'colsample_bytree': 1.0, 'max_depth': 65, 'subsample': 1.0, 'lambda': 22.162182889142439, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96845 valid-rmse:4.98643 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.840499 valid-rmse:0.869855 [20] train-rmse:0.370922 valid-rmse:0.417231 [30] train-rmse:0.337371 valid-rmse:0.386289 [39] train-rmse:0.330876 valid-rmse:0.381348 Iteration No: 643 ended. Search finished for the next optimal point. Time taken: 45.3108 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 644 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.27633328510084076, 'colsample_bytree': 1.0, 'max_depth': 78, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.35908 valid-rmse:4.37738 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.417649 valid-rmse:0.461009 [20] train-rmse:0.342846 valid-rmse:0.390764 [30] train-rmse:0.333356 valid-rmse:0.383709 [39] train-rmse:0.3296 valid-rmse:0.38191 Iteration No: 644 ended. Search finished for the next optimal point. Time taken: 47.2177 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 645 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23714 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391817 valid-rmse:0.436696 [20] train-rmse:0.340491 valid-rmse:0.388882 [30] train-rmse:0.332678 valid-rmse:0.383832 [39] train-rmse:0.329126 valid-rmse:0.38221 Iteration No: 645 ended. Search finished for the next optimal point. Time taken: 50.3015 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 646 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 199, 'eta': 0.18617316092838609, 'colsample_bytree': 1.0, 'max_depth': 57, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8889 valid-rmse:4.90641 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.716903 valid-rmse:0.748376 [20] train-rmse:0.3497 valid-rmse:0.398547 [30] train-rmse:0.333878 valid-rmse:0.384114 [39] train-rmse:0.330528 valid-rmse:0.382182 Iteration No: 646 ended. Search finished for the next optimal point. Time taken: 49.7137 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 647 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 86, 'eta': 0.26612105743836345, 'colsample_bytree': 0.68301607464337244, 'max_depth': 95, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42 valid-rmse:4.43829 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.434463 valid-rmse:0.477534 [20] train-rmse:0.343292 valid-rmse:0.391942 [30] train-rmse:0.332447 valid-rmse:0.384007 [39] train-rmse:0.328324 valid-rmse:0.382296 Iteration No: 647 ended. Search finished for the next optimal point. Time taken: 42.6373 Function value obtained: 0.3823 Current minimum: 0.3798 Iteration No: 648 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.17284648886752321, 'colsample_bytree': 0.74573090596610525, 'max_depth': 79, 'subsample': 1.0, 'lambda': 22.000793550032746, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97133 valid-rmse:4.98925 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.844933 valid-rmse:0.874253 [20] train-rmse:0.371945 valid-rmse:0.418173 [30] train-rmse:0.337382 valid-rmse:0.386567 [39] train-rmse:0.330904 valid-rmse:0.381567 Iteration No: 648 ended. Search finished for the next optimal point. Time taken: 43.5487 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 649 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.23241005522488731, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 35.481197886361976, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.6176 valid-rmse:4.63588 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.505614 valid-rmse:0.544931 [20] train-rmse:0.347187 valid-rmse:0.393425 [30] train-rmse:0.33681 valid-rmse:0.384486 [39] train-rmse:0.332985 valid-rmse:0.381677 Iteration No: 649 ended. Search finished for the next optimal point. Time taken: 45.1577 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 650 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 92, 'eta': 0.21627208743496801, 'colsample_bytree': 1.0, 'max_depth': 165, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.71539 valid-rmse:4.73357 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.575895 valid-rmse:0.6129 [20] train-rmse:0.352231 valid-rmse:0.400321 [30] train-rmse:0.335718 valid-rmse:0.385941 [39] train-rmse:0.3302 valid-rmse:0.382156 Iteration No: 650 ended. Search finished for the next optimal point. Time taken: 49.0859 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 651 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 177, 'eta': 0.17647156681752374, 'colsample_bytree': 0.67333987336027556, 'max_depth': 72, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.94683 valid-rmse:4.96437 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.793237 valid-rmse:0.82282 [20] train-rmse:0.355507 valid-rmse:0.403645 [30] train-rmse:0.333377 valid-rmse:0.383518 [39] train-rmse:0.329401 valid-rmse:0.380722 Iteration No: 651 ended. Search finished for the next optimal point. Time taken: 45.6774 Function value obtained: 0.3807 Current minimum: 0.3798 Iteration No: 652 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.18995032457486394, 'colsample_bytree': 0.72720137200129753, 'max_depth': 61, 'subsample': 1.0, 'lambda': 18.653077219140016, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86947 valid-rmse:4.88739 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.710053 valid-rmse:0.742146 [20] train-rmse:0.35735 valid-rmse:0.404031 [30] train-rmse:0.335888 valid-rmse:0.384495 [39] train-rmse:0.330578 valid-rmse:0.380591 Iteration No: 652 ended. Search finished for the next optimal point. Time taken: 42.5068 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 653 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 182, 'eta': 0.18376365058519248, 'colsample_bytree': 0.65781389574167792, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90331 valid-rmse:4.92083 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.734768 valid-rmse:0.76578 [20] train-rmse:0.350488 valid-rmse:0.39911 [30] train-rmse:0.332943 valid-rmse:0.383029 [39] train-rmse:0.32972 valid-rmse:0.380952 Iteration No: 653 ended. Search finished for the next optimal point. Time taken: 46.4191 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 654 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26690421666142561, 'colsample_bytree': 1.0, 'max_depth': 170, 'subsample': 1.0, 'lambda': 38.577366315291705, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41282 valid-rmse:4.43117 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.425015 valid-rmse:0.467917 [20] train-rmse:0.34447 valid-rmse:0.390799 [30] train-rmse:0.336306 valid-rmse:0.384267 [39] train-rmse:0.33307 valid-rmse:0.382212 Iteration No: 654 ended. Search finished for the next optimal point. Time taken: 48.0868 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 655 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 182, 'eta': 0.18355654223866821, 'colsample_bytree': 0.65857483183727172, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90454 valid-rmse:4.92206 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.736322 valid-rmse:0.767316 [20] train-rmse:0.350547 valid-rmse:0.399022 [30] train-rmse:0.332968 valid-rmse:0.383016 [39] train-rmse:0.329741 valid-rmse:0.380978 Iteration No: 655 ended. Search finished for the next optimal point. Time taken: 46.6554 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 656 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.23658607895266542, 'colsample_bytree': 1.0, 'max_depth': 87, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59484 valid-rmse:4.61305 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.500488 valid-rmse:0.540124 [20] train-rmse:0.348824 valid-rmse:0.396247 [30] train-rmse:0.335242 valid-rmse:0.384713 [39] train-rmse:0.330672 valid-rmse:0.381932 Iteration No: 656 ended. Search finished for the next optimal point. Time taken: 46.8859 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 657 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 168, 'eta': 0.19081849443722795, 'colsample_bytree': 0.73478517853629943, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.100620530873584, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86439 valid-rmse:4.88232 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.704683 valid-rmse:0.7369 [20] train-rmse:0.357125 valid-rmse:0.404047 [30] train-rmse:0.336153 valid-rmse:0.384929 [39] train-rmse:0.33075 valid-rmse:0.381162 Iteration No: 657 ended. Search finished for the next optimal point. Time taken: 44.0286 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 658 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 167, 'eta': 0.19016762872346302, 'colsample_bytree': 0.73434679909838441, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.135895442578875, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86826 valid-rmse:4.8862 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.709286 valid-rmse:0.741481 [20] train-rmse:0.357346 valid-rmse:0.404323 [30] train-rmse:0.335891 valid-rmse:0.38497 [39] train-rmse:0.330875 valid-rmse:0.381515 Iteration No: 658 ended. Search finished for the next optimal point. Time taken: 43.9945 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 659 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 137, 'eta': 0.17268663447839144, 'colsample_bytree': 0.74440759749769048, 'max_depth': 79, 'subsample': 1.0, 'lambda': 21.540167897928271, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97227 valid-rmse:4.99019 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.846376 valid-rmse:0.87561 [20] train-rmse:0.37207 valid-rmse:0.4181 [30] train-rmse:0.337539 valid-rmse:0.386415 [39] train-rmse:0.331195 valid-rmse:0.381842 Iteration No: 659 ended. Search finished for the next optimal point. Time taken: 42.3748 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 660 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.19074571699749626, 'colsample_bytree': 0.73280468204888027, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.409811350959092, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86484 valid-rmse:4.88277 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.705074 valid-rmse:0.737319 [20] train-rmse:0.356818 valid-rmse:0.403637 [30] train-rmse:0.335642 valid-rmse:0.384363 [39] train-rmse:0.330157 valid-rmse:0.380464 Iteration No: 660 ended. Search finished for the next optimal point. Time taken: 43.4257 Function value obtained: 0.3805 Current minimum: 0.3798 Iteration No: 661 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 168, 'eta': 0.19092301417346119, 'colsample_bytree': 0.73505850829336028, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.165322908425086, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86377 valid-rmse:4.8817 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.703993 valid-rmse:0.736227 [20] train-rmse:0.357048 valid-rmse:0.403918 [30] train-rmse:0.336267 valid-rmse:0.385249 [39] train-rmse:0.330749 valid-rmse:0.38128 Iteration No: 661 ended. Search finished for the next optimal point. Time taken: 43.7405 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 662 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.26571238369675199, 'colsample_bytree': 1.0, 'max_depth': 164, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.42206 valid-rmse:4.44034 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.432812 valid-rmse:0.475528 [20] train-rmse:0.342958 valid-rmse:0.390621 [30] train-rmse:0.333362 valid-rmse:0.383285 [39] train-rmse:0.329158 valid-rmse:0.38113 Iteration No: 662 ended. Search finished for the next optimal point. Time taken: 50.9955 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 663 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.2276775959869595, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 34.660814992192371, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64569 valid-rmse:4.66396 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.522078 valid-rmse:0.560514 [20] train-rmse:0.348394 valid-rmse:0.394655 [30] train-rmse:0.337525 valid-rmse:0.385039 [39] train-rmse:0.333392 valid-rmse:0.382008 Iteration No: 663 ended. Search finished for the next optimal point. Time taken: 48.3350 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 664 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 148, 'eta': 0.18889889234263971, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 43.627182393480147, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87651 valid-rmse:4.89471 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.72278 valid-rmse:0.755063 [20] train-rmse:0.361599 valid-rmse:0.408003 [30] train-rmse:0.337487 valid-rmse:0.385923 [39] train-rmse:0.331154 valid-rmse:0.381352 Iteration No: 664 ended. Search finished for the next optimal point. Time taken: 47.6211 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 665 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 141, 'eta': 0.17364026325560877, 'colsample_bytree': 0.74285469688643713, 'max_depth': 77, 'subsample': 1.0, 'lambda': 21.529073448215446, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96659 valid-rmse:4.98451 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.837943 valid-rmse:0.867334 [20] train-rmse:0.371018 valid-rmse:0.417189 [30] train-rmse:0.337458 valid-rmse:0.386374 [39] train-rmse:0.330911 valid-rmse:0.381244 Iteration No: 665 ended. Search finished for the next optimal point. Time taken: 43.8285 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 666 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 167, 'eta': 0.19109384623082759, 'colsample_bytree': 0.73633612309780938, 'max_depth': 61, 'subsample': 1.0, 'lambda': 21.561427881763649, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.86277 valid-rmse:4.88071 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.702782 valid-rmse:0.735089 [20] train-rmse:0.356871 valid-rmse:0.403794 [30] train-rmse:0.335746 valid-rmse:0.384738 [39] train-rmse:0.330592 valid-rmse:0.381172 Iteration No: 666 ended. Search finished for the next optimal point. Time taken: 45.3058 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 667 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 150, 'eta': 0.1896636755436043, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 44.154396756323521, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.87198 valid-rmse:4.89018 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.717971 valid-rmse:0.750201 [20] train-rmse:0.361374 valid-rmse:0.407726 [30] train-rmse:0.337813 valid-rmse:0.386164 [39] train-rmse:0.331684 valid-rmse:0.381729 Iteration No: 667 ended. Search finished for the next optimal point. Time taken: 45.9777 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 668 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 287, 'eta': 0.21940558540692756, 'colsample_bytree': 0.8848248376320248, 'max_depth': 43, 'subsample': 0.97919158161137254, 'lambda': 0.77563960172220914, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.69176 valid-rmse:4.70949 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.534252 valid-rmse:0.571724 [20] train-rmse:0.347335 valid-rmse:0.393879 [30] train-rmse:0.339695 valid-rmse:0.386747 [39] train-rmse:0.337597 valid-rmse:0.385101 Iteration No: 668 ended. Search finished for the next optimal point. Time taken: 46.7432 Function value obtained: 0.3851 Current minimum: 0.3798 Iteration No: 669 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.16370931429962449, 'colsample_bytree': 1.0, 'max_depth': 102, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.02295 valid-rmse:5.04057 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.911281 valid-rmse:0.938772 [20] train-rmse:0.368336 valid-rmse:0.416455 [30] train-rmse:0.334192 valid-rmse:0.384988 [39] train-rmse:0.329685 valid-rmse:0.381704 Iteration No: 669 ended. Search finished for the next optimal point. Time taken: 50.7308 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 670 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 114, 'eta': 0.18010787179179794, 'colsample_bytree': 1.0, 'max_depth': 57, 'subsample': 1.0, 'lambda': 29.299118067042354, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92821 valid-rmse:4.9462 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.785414 valid-rmse:0.816157 [20] train-rmse:0.364834 valid-rmse:0.412012 [30] train-rmse:0.336129 valid-rmse:0.386015 [39] train-rmse:0.329545 valid-rmse:0.381469 Iteration No: 670 ended. Search finished for the next optimal point. Time taken: 47.9895 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 671 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26324120340165125, 'colsample_bytree': 1.0, 'max_depth': 67, 'subsample': 1.0, 'lambda': 33.984709475760106, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43434 valid-rmse:4.45269 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.429245 valid-rmse:0.471991 [20] train-rmse:0.344083 valid-rmse:0.390972 [30] train-rmse:0.335783 valid-rmse:0.384328 [39] train-rmse:0.332372 valid-rmse:0.381963 Iteration No: 671 ended. Search finished for the next optimal point. Time taken: 48.4719 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 672 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.18818889964761121, 'colsample_bytree': 0.40000000000000002, 'max_depth': 53, 'subsample': 1.0, 'lambda': 28.283767133223211, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88042 valid-rmse:4.89831 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.731296 valid-rmse:0.763152 [20] train-rmse:0.367137 valid-rmse:0.412957 [30] train-rmse:0.340282 valid-rmse:0.388308 [39] train-rmse:0.333315 valid-rmse:0.382975 Iteration No: 672 ended. Search finished for the next optimal point. Time taken: 39.5403 Function value obtained: 0.3830 Current minimum: 0.3798 Iteration No: 673 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 160, 'eta': 0.17023563322176688, 'colsample_bytree': 0.65539282616933114, 'max_depth': 84, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98402 valid-rmse:5.00156 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.848236 valid-rmse:0.876767 [20] train-rmse:0.360339 valid-rmse:0.408445 [30] train-rmse:0.332818 valid-rmse:0.383186 [39] train-rmse:0.328661 valid-rmse:0.380146 Iteration No: 673 ended. Search finished for the next optimal point. Time taken: 48.7143 Function value obtained: 0.3801 Current minimum: 0.3798 Iteration No: 674 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 112, 'eta': 0.25160778975615772, 'colsample_bytree': 0.78946638757656729, 'max_depth': 163, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.50606 valid-rmse:4.52431 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.461527 valid-rmse:0.50299 [20] train-rmse:0.34585 valid-rmse:0.393343 [30] train-rmse:0.33372 valid-rmse:0.383668 [39] train-rmse:0.329196 valid-rmse:0.381059 Iteration No: 674 ended. Search finished for the next optimal point. Time taken: 49.6546 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 675 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 185, 'eta': 0.23895609865871412, 'colsample_bytree': 1.0, 'max_depth': 137, 'subsample': 1.0, 'lambda': 66.650979483407369, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58002 valid-rmse:4.59826 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.490726 valid-rmse:0.530534 [20] train-rmse:0.347647 valid-rmse:0.39433 [30] train-rmse:0.335734 valid-rmse:0.38431 [39] train-rmse:0.331521 valid-rmse:0.38195 Iteration No: 675 ended. Search finished for the next optimal point. Time taken: 49.8658 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 676 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.16493988562350681, 'colsample_bytree': 1.0, 'max_depth': 93, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.0156 valid-rmse:5.03323 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.899065 valid-rmse:0.926841 [20] train-rmse:0.366586 valid-rmse:0.415026 [30] train-rmse:0.33399 valid-rmse:0.385007 [39] train-rmse:0.329595 valid-rmse:0.381757 Iteration No: 676 ended. Search finished for the next optimal point. Time taken: 52.8612 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 677 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 135, 'eta': 0.27367008411700661, 'colsample_bytree': 1.0, 'max_depth': 170, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37488 valid-rmse:4.39316 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.419765 valid-rmse:0.463317 [20] train-rmse:0.342975 valid-rmse:0.390889 [30] train-rmse:0.333119 valid-rmse:0.383243 [39] train-rmse:0.329422 valid-rmse:0.381728 Iteration No: 677 ended. Search finished for the next optimal point. Time taken: 51.4376 Function value obtained: 0.3817 Current minimum: 0.3798 Iteration No: 678 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.17246608352977966, 'colsample_bytree': 1.0, 'max_depth': 131, 'subsample': 1.0, 'lambda': 25.833992608163427, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97354 valid-rmse:4.99152 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.84889 valid-rmse:0.878132 [20] train-rmse:0.372869 valid-rmse:0.419147 [30] train-rmse:0.337824 valid-rmse:0.386847 [39] train-rmse:0.331053 valid-rmse:0.381769 Iteration No: 678 ended. Search finished for the next optimal point. Time taken: 50.5692 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 679 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 130, 'eta': 0.27706727053962815, 'colsample_bytree': 0.73656387262578105, 'max_depth': 92, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.355 valid-rmse:4.37334 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.416778 valid-rmse:0.460507 [20] train-rmse:0.343307 valid-rmse:0.391314 [30] train-rmse:0.33329 valid-rmse:0.383749 [39] train-rmse:0.329158 valid-rmse:0.38175 Iteration No: 679 ended. Search finished for the next optimal point. Time taken: 48.6995 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 680 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.1800064526581367, 'colsample_bytree': 0.67071116911491635, 'max_depth': 69, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92572 valid-rmse:4.94326 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.764327 valid-rmse:0.794648 [20] train-rmse:0.352961 valid-rmse:0.401499 [30] train-rmse:0.333037 valid-rmse:0.383239 [39] train-rmse:0.329568 valid-rmse:0.380782 Iteration No: 680 ended. Search finished for the next optimal point. Time taken: 49.6160 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 681 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 178, 'eta': 0.17983748860162513, 'colsample_bytree': 0.67126446190478939, 'max_depth': 70, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92674 valid-rmse:4.94428 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.765629 valid-rmse:0.795875 [20] train-rmse:0.353128 valid-rmse:0.401543 [30] train-rmse:0.333312 valid-rmse:0.383394 [39] train-rmse:0.329702 valid-rmse:0.38098 Iteration No: 681 ended. Search finished for the next optimal point. Time taken: 48.7254 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 682 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 180, 'eta': 0.18050110270676298, 'colsample_bytree': 0.67071874615984162, 'max_depth': 69, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92277 valid-rmse:4.9403 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.760531 valid-rmse:0.790773 [20] train-rmse:0.352611 valid-rmse:0.401339 [30] train-rmse:0.333048 valid-rmse:0.383599 [39] train-rmse:0.329521 valid-rmse:0.381296 Iteration No: 682 ended. Search finished for the next optimal point. Time taken: 48.8699 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 683 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.17255960656352035, 'colsample_bytree': 0.74496068257091808, 'max_depth': 81, 'subsample': 1.0, 'lambda': 20.443023381642796, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97297 valid-rmse:4.99089 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.847197 valid-rmse:0.876433 [20] train-rmse:0.372064 valid-rmse:0.418275 [30] train-rmse:0.337178 valid-rmse:0.386123 [39] train-rmse:0.330642 valid-rmse:0.381135 Iteration No: 683 ended. Search finished for the next optimal point. Time taken: 48.1458 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 684 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.16765214569406131, 'colsample_bytree': 0.64629905329624826, 'max_depth': 92, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99944 valid-rmse:5.01697 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.872717 valid-rmse:0.900877 [20] train-rmse:0.363248 valid-rmse:0.411196 [30] train-rmse:0.333293 valid-rmse:0.38386 [39] train-rmse:0.329129 valid-rmse:0.380969 Iteration No: 684 ended. Search finished for the next optimal point. Time taken: 49.7538 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 685 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.2708973878602623, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.3913 valid-rmse:4.40958 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.423219 valid-rmse:0.466123 [20] train-rmse:0.343721 valid-rmse:0.391012 [30] train-rmse:0.334254 valid-rmse:0.383896 [39] train-rmse:0.330114 valid-rmse:0.381429 Iteration No: 685 ended. Search finished for the next optimal point. Time taken: 51.8295 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 686 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 136, 'eta': 0.17312395279622902, 'colsample_bytree': 0.74625187933223036, 'max_depth': 79, 'subsample': 1.0, 'lambda': 21.125240885448374, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96965 valid-rmse:4.98757 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.842441 valid-rmse:0.871765 [20] train-rmse:0.371585 valid-rmse:0.417707 [30] train-rmse:0.337443 valid-rmse:0.386382 [39] train-rmse:0.330926 valid-rmse:0.381294 Iteration No: 686 ended. Search finished for the next optimal point. Time taken: 47.0992 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 687 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23714 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391735 valid-rmse:0.43678 [20] train-rmse:0.340499 valid-rmse:0.388855 [30] train-rmse:0.332348 valid-rmse:0.38335 [39] train-rmse:0.328918 valid-rmse:0.382158 Iteration No: 687 ended. Search finished for the next optimal point. Time taken: 56.2751 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 688 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.24437548298521364, 'colsample_bytree': 1.0, 'max_depth': 75, 'subsample': 1.0, 'lambda': 44.597400015460458, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.54687 valid-rmse:4.56517 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.472952 valid-rmse:0.513484 [20] train-rmse:0.346997 valid-rmse:0.393248 [30] train-rmse:0.337328 valid-rmse:0.384775 [39] train-rmse:0.333383 valid-rmse:0.382144 Iteration No: 688 ended. Search finished for the next optimal point. Time taken: 50.9486 Function value obtained: 0.3821 Current minimum: 0.3798 Iteration No: 689 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.16784906014822595, 'colsample_bytree': 0.64729360216313658, 'max_depth': 92, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99826 valid-rmse:5.0158 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.87077 valid-rmse:0.898955 [20] train-rmse:0.362924 valid-rmse:0.410924 [30] train-rmse:0.33312 valid-rmse:0.383842 [39] train-rmse:0.328796 valid-rmse:0.380481 Iteration No: 689 ended. Search finished for the next optimal point. Time taken: 49.0197 Function value obtained: 0.3805 Current minimum: 0.3798 Iteration No: 690 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26400765996157138, 'colsample_bytree': 0.41244827136564838, 'max_depth': 187, 'subsample': 0.87575059650630038, 'lambda': 86.676279147628989, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.43286 valid-rmse:4.45129 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.445994 valid-rmse:0.48788 [20] train-rmse:0.353419 valid-rmse:0.399077 [30] train-rmse:0.341001 valid-rmse:0.387981 [39] train-rmse:0.335884 valid-rmse:0.383884 Iteration No: 690 ended. Search finished for the next optimal point. Time taken: 41.0441 Function value obtained: 0.3839 Current minimum: 0.3798 Iteration No: 691 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 38, 'eta': 0.29948530418196523, 'colsample_bytree': 0.95395570797496043, 'max_depth': 197, 'subsample': 0.99901727826511055, 'lambda': 89.425621008947687, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.22182 valid-rmse:4.24017 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.391131 valid-rmse:0.436508 [20] train-rmse:0.345606 valid-rmse:0.392944 [30] train-rmse:0.338906 valid-rmse:0.387249 [39] train-rmse:0.336199 valid-rmse:0.385451 Iteration No: 691 ended. Search finished for the next optimal point. Time taken: 52.7043 Function value obtained: 0.3855 Current minimum: 0.3798 Iteration No: 692 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.16793690438083986, 'colsample_bytree': 0.64638220322509821, 'max_depth': 91, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9984 valid-rmse:5.01597 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.870593 valid-rmse:0.898766 [20] train-rmse:0.363767 valid-rmse:0.411821 [30] train-rmse:0.334019 valid-rmse:0.384381 [39] train-rmse:0.329715 valid-rmse:0.381251 Iteration No: 692 ended. Search finished for the next optimal point. Time taken: 50.3247 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 693 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 228, 'eta': 0.19364677798338678, 'colsample_bytree': 1.0, 'max_depth': 66, 'subsample': 1.0, 'lambda': 32.504834847590388, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84793 valid-rmse:4.86613 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.689061 valid-rmse:0.722156 [20] train-rmse:0.358133 valid-rmse:0.404616 [30] train-rmse:0.338732 valid-rmse:0.386544 [39] train-rmse:0.333314 valid-rmse:0.382343 Iteration No: 693 ended. Search finished for the next optimal point. Time taken: 49.6681 Function value obtained: 0.3823 Current minimum: 0.3798 Iteration No: 694 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 146, 'eta': 0.18183453538525413, 'colsample_bytree': 1.0, 'max_depth': 174, 'subsample': 1.0, 'lambda': 34.110603595078778, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91822 valid-rmse:4.93641 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.773838 valid-rmse:0.804909 [20] train-rmse:0.365516 valid-rmse:0.411819 [30] train-rmse:0.337214 valid-rmse:0.38581 [39] train-rmse:0.331278 valid-rmse:0.381525 Iteration No: 694 ended. Search finished for the next optimal point. Time taken: 48.7772 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 695 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 119, 'eta': 0.25394745666329144, 'colsample_bytree': 1.0, 'max_depth': 135, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.49184 valid-rmse:4.51009 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.454699 valid-rmse:0.4967 [20] train-rmse:0.345329 valid-rmse:0.393042 [30] train-rmse:0.33429 valid-rmse:0.384124 [39] train-rmse:0.329715 valid-rmse:0.381643 Iteration No: 695 ended. Search finished for the next optimal point. Time taken: 52.4155 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 696 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.16819965297570197, 'colsample_bytree': 0.64412602913256189, 'max_depth': 90, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99617 valid-rmse:5.0137 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.867898 valid-rmse:0.896132 [20] train-rmse:0.362622 valid-rmse:0.410812 [30] train-rmse:0.333399 valid-rmse:0.383855 [39] train-rmse:0.329139 valid-rmse:0.380806 Iteration No: 696 ended. Search finished for the next optimal point. Time taken: 48.5657 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 697 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.16694258250629387, 'colsample_bytree': 1.0, 'max_depth': 82, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00365 valid-rmse:5.02127 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.879525 valid-rmse:0.90763 [20] train-rmse:0.3644 valid-rmse:0.413115 [30] train-rmse:0.334236 valid-rmse:0.385472 [39] train-rmse:0.330018 valid-rmse:0.382442 Iteration No: 697 ended. Search finished for the next optimal point. Time taken: 56.2685 Function value obtained: 0.3824 Current minimum: 0.3798 Iteration No: 698 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 116, 'eta': 0.24859929260483213, 'colsample_bytree': 0.77837153180047114, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.5239 valid-rmse:4.54215 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.469411 valid-rmse:0.510518 [20] train-rmse:0.346952 valid-rmse:0.394385 [30] train-rmse:0.334332 valid-rmse:0.384068 [39] train-rmse:0.32946 valid-rmse:0.380838 Iteration No: 698 ended. Search finished for the next optimal point. Time taken: 47.7109 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 699 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 129, 'eta': 0.2689271884238692, 'colsample_bytree': 0.75752008346704236, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.40326 valid-rmse:4.42158 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.429111 valid-rmse:0.472319 [20] train-rmse:0.344455 valid-rmse:0.392272 [30] train-rmse:0.333614 valid-rmse:0.383539 [39] train-rmse:0.329476 valid-rmse:0.381132 Iteration No: 699 ended. Search finished for the next optimal point. Time taken: 48.1965 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 700 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.18377193842401707, 'colsample_bytree': 0.65764166436677152, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90325 valid-rmse:4.92078 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.734382 valid-rmse:0.765329 [20] train-rmse:0.350407 valid-rmse:0.398932 [30] train-rmse:0.332574 valid-rmse:0.382636 [39] train-rmse:0.329278 valid-rmse:0.380358 Iteration No: 700 ended. Search finished for the next optimal point. Time taken: 52.1395 Function value obtained: 0.3804 Current minimum: 0.3798 Iteration No: 701 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 124, 'eta': 0.26114527849696745, 'colsample_bytree': 1.0, 'max_depth': 145, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44915 valid-rmse:4.46741 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.44037 valid-rmse:0.483126 [20] train-rmse:0.343729 valid-rmse:0.391729 [30] train-rmse:0.333476 valid-rmse:0.383742 [39] train-rmse:0.329579 valid-rmse:0.38185 Iteration No: 701 ended. Search finished for the next optimal point. Time taken: 53.1908 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 702 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.29999999999999999, 'colsample_bytree': 1.0, 'max_depth': 169, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21879 valid-rmse:4.23714 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.390994 valid-rmse:0.43579 [20] train-rmse:0.340573 valid-rmse:0.388588 [30] train-rmse:0.332713 valid-rmse:0.383309 [39] train-rmse:0.329578 valid-rmse:0.382154 Iteration No: 702 ended. Search finished for the next optimal point. Time taken: 56.4690 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 703 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.17270883118081884, 'colsample_bytree': 1.0, 'max_depth': 68, 'subsample': 1.0, 'lambda': 14.289380804883612, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97152 valid-rmse:4.9895 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.843287 valid-rmse:0.872436 [20] train-rmse:0.369615 valid-rmse:0.416003 [30] train-rmse:0.336992 valid-rmse:0.385874 [39] train-rmse:0.330751 valid-rmse:0.381254 Iteration No: 703 ended. Search finished for the next optimal point. Time taken: 53.7935 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 704 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 143, 'eta': 0.23879252082580429, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58175 valid-rmse:4.59997 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.494002 valid-rmse:0.533824 [20] train-rmse:0.348508 valid-rmse:0.395576 [30] train-rmse:0.335881 valid-rmse:0.384782 [39] train-rmse:0.330942 valid-rmse:0.381628 Iteration No: 704 ended. Search finished for the next optimal point. Time taken: 54.7886 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 705 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.18381402314853909, 'colsample_bytree': 0.65969920164890117, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.903 valid-rmse:4.92053 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.734176 valid-rmse:0.765054 [20] train-rmse:0.350187 valid-rmse:0.398845 [30] train-rmse:0.332808 valid-rmse:0.383199 [39] train-rmse:0.329259 valid-rmse:0.380912 Iteration No: 705 ended. Search finished for the next optimal point. Time taken: 50.7196 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 706 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 107, 'eta': 0.23794742035665623, 'colsample_bytree': 0.78645681609839868, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58708 valid-rmse:4.60531 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.497503 valid-rmse:0.537545 [20] train-rmse:0.348798 valid-rmse:0.396388 [30] train-rmse:0.33464 valid-rmse:0.384697 [39] train-rmse:0.32945 valid-rmse:0.381408 Iteration No: 706 ended. Search finished for the next optimal point. Time taken: 48.7725 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 707 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 149, 'eta': 0.18141051323294824, 'colsample_bytree': 0.72956649449354583, 'max_depth': 66, 'subsample': 0.80000000000000004, 'lambda': 19.018484602499626, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92044 valid-rmse:4.93844 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.77407 valid-rmse:0.804764 [20] train-rmse:0.365102 valid-rmse:0.411382 [30] train-rmse:0.338439 valid-rmse:0.386674 [39] train-rmse:0.333089 valid-rmse:0.382608 Iteration No: 707 ended. Search finished for the next optimal point. Time taken: 48.7094 Function value obtained: 0.3826 Current minimum: 0.3798 Iteration No: 708 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.183717886726672, 'colsample_bytree': 0.66143910021891739, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90358 valid-rmse:4.92111 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.735157 valid-rmse:0.766205 [20] train-rmse:0.350192 valid-rmse:0.399048 [30] train-rmse:0.332841 valid-rmse:0.383098 [39] train-rmse:0.329388 valid-rmse:0.380776 Iteration No: 708 ended. Search finished for the next optimal point. Time taken: 50.7880 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 709 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.2712864954969546, 'colsample_bytree': 0.75263943955995782, 'max_depth': 169, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38927 valid-rmse:4.40759 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.425336 valid-rmse:0.468582 [20] train-rmse:0.344531 valid-rmse:0.391973 [30] train-rmse:0.334125 valid-rmse:0.384022 [39] train-rmse:0.329796 valid-rmse:0.381533 Iteration No: 709 ended. Search finished for the next optimal point. Time taken: 50.1468 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 710 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 94, 'eta': 0.17976157578162244, 'colsample_bytree': 0.70545787378894986, 'max_depth': 68, 'subsample': 1.0, 'lambda': 26.229259278841162, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93037 valid-rmse:4.94829 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.788431 valid-rmse:0.818938 [20] train-rmse:0.365445 valid-rmse:0.412847 [30] train-rmse:0.335576 valid-rmse:0.385964 [39] train-rmse:0.328819 valid-rmse:0.381125 Iteration No: 710 ended. Search finished for the next optimal point. Time taken: 47.8288 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 711 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26727334356550847, 'colsample_bytree': 0.87154769703060464, 'max_depth': 200, 'subsample': 1.0, 'lambda': 40.472268152322215, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41071 valid-rmse:4.42906 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.426546 valid-rmse:0.469171 [20] train-rmse:0.345069 valid-rmse:0.391202 [30] train-rmse:0.336222 valid-rmse:0.384047 [39] train-rmse:0.332724 valid-rmse:0.381618 Iteration No: 711 ended. Search finished for the next optimal point. Time taken: 51.7439 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 712 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.18359852129967111, 'colsample_bytree': 0.66111719794613866, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90429 valid-rmse:4.92182 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.736254 valid-rmse:0.76732 [20] train-rmse:0.350597 valid-rmse:0.399226 [30] train-rmse:0.333086 valid-rmse:0.383327 [39] train-rmse:0.329575 valid-rmse:0.380866 Iteration No: 712 ended. Search finished for the next optimal point. Time taken: 52.1812 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 713 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.16743079303638081, 'colsample_bytree': 0.64019440393659932, 'max_depth': 94, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00076 valid-rmse:5.01829 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.87494 valid-rmse:0.903015 [20] train-rmse:0.363575 valid-rmse:0.411607 [30] train-rmse:0.333119 valid-rmse:0.383739 [39] train-rmse:0.328974 valid-rmse:0.380759 Iteration No: 713 ended. Search finished for the next optimal point. Time taken: 52.1575 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 714 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 88, 'eta': 0.21507721455272671, 'colsample_bytree': 1.0, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.72248 valid-rmse:4.74066 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.58162 valid-rmse:0.618474 [20] train-rmse:0.352693 valid-rmse:0.400781 [30] train-rmse:0.335453 valid-rmse:0.385586 [39] train-rmse:0.32989 valid-rmse:0.381999 Iteration No: 714 ended. Search finished for the next optimal point. Time taken: 53.9426 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 715 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 154, 'eta': 0.16735785213879023, 'colsample_bytree': 0.6394617760397262, 'max_depth': 94, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00119 valid-rmse:5.01873 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.875637 valid-rmse:0.903822 [20] train-rmse:0.363567 valid-rmse:0.411953 [30] train-rmse:0.332787 valid-rmse:0.38394 [39] train-rmse:0.328631 valid-rmse:0.380825 Iteration No: 715 ended. Search finished for the next optimal point. Time taken: 51.0736 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 716 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.16747444069487732, 'colsample_bytree': 0.64231683467658451, 'max_depth': 95, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00049 valid-rmse:5.01803 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.874622 valid-rmse:0.902752 [20] train-rmse:0.363268 valid-rmse:0.411488 [30] train-rmse:0.332904 valid-rmse:0.383602 [39] train-rmse:0.328602 valid-rmse:0.380509 Iteration No: 716 ended. Search finished for the next optimal point. Time taken: 51.8044 Function value obtained: 0.3805 Current minimum: 0.3798 Iteration No: 717 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.16740579377779966, 'colsample_bytree': 0.64182528076139178, 'max_depth': 94, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00091 valid-rmse:5.01844 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.875175 valid-rmse:0.903242 [20] train-rmse:0.3635 valid-rmse:0.411389 [30] train-rmse:0.333024 valid-rmse:0.38376 [39] train-rmse:0.328693 valid-rmse:0.380536 Iteration No: 717 ended. Search finished for the next optimal point. Time taken: 52.0713 Function value obtained: 0.3805 Current minimum: 0.3798 Iteration No: 718 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 180, 'eta': 0.18204120017423367, 'colsample_bytree': 0.6659246923304778, 'max_depth': 67, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91359 valid-rmse:4.93111 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.748225 valid-rmse:0.778809 [20] train-rmse:0.351847 valid-rmse:0.40035 [30] train-rmse:0.333446 valid-rmse:0.383583 [39] train-rmse:0.329833 valid-rmse:0.3812 Iteration No: 718 ended. Search finished for the next optimal point. Time taken: 52.2848 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 719 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 130, 'eta': 0.17278263555785725, 'colsample_bytree': 0.73288588416899658, 'max_depth': 80, 'subsample': 1.0, 'lambda': 20.450774955054026, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.97165 valid-rmse:4.98957 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.84506 valid-rmse:0.87445 [20] train-rmse:0.371807 valid-rmse:0.418196 [30] train-rmse:0.337288 valid-rmse:0.38647 [39] train-rmse:0.330725 valid-rmse:0.381394 Iteration No: 719 ended. Search finished for the next optimal point. Time taken: 48.2990 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 720 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.16608028819727294, 'colsample_bytree': 0.64026723042228739, 'max_depth': 102, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00882 valid-rmse:5.02636 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.888567 valid-rmse:0.916412 [20] train-rmse:0.365375 valid-rmse:0.413382 [30] train-rmse:0.333303 valid-rmse:0.383933 [39] train-rmse:0.328876 valid-rmse:0.380663 Iteration No: 720 ended. Search finished for the next optimal point. Time taken: 50.9653 Function value obtained: 0.3807 Current minimum: 0.3798 Iteration No: 721 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.20264015298092186, 'colsample_bytree': 0.79848684649448431, 'max_depth': 176, 'subsample': 1.0, 'lambda': 55.845508941187589, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.79552 valid-rmse:4.81367 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.64038 valid-rmse:0.674761 [20] train-rmse:0.35669 valid-rmse:0.403477 [30] train-rmse:0.337608 valid-rmse:0.386244 [39] train-rmse:0.331693 valid-rmse:0.38185 Iteration No: 721 ended. Search finished for the next optimal point. Time taken: 52.1601 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 722 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 145, 'eta': 0.29999999999999999, 'colsample_bytree': 0.68327663577393438, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393943 valid-rmse:0.438562 [20] train-rmse:0.341908 valid-rmse:0.389695 [30] train-rmse:0.333138 valid-rmse:0.383303 [39] train-rmse:0.329229 valid-rmse:0.381107 Iteration No: 722 ended. Search finished for the next optimal point. Time taken: 51.2738 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 723 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.16857777365293036, 'colsample_bytree': 0.71531488280873878, 'max_depth': 161, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99393 valid-rmse:5.0115 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.864006 valid-rmse:0.892263 [20] train-rmse:0.36258 valid-rmse:0.410415 [30] train-rmse:0.333786 valid-rmse:0.383611 [39] train-rmse:0.329631 valid-rmse:0.380588 Iteration No: 723 ended. Search finished for the next optimal point. Time taken: 53.4087 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 724 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.18218129701328784, 'colsample_bytree': 0.6637694797727256, 'max_depth': 67, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91275 valid-rmse:4.93028 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.746794 valid-rmse:0.777416 [20] train-rmse:0.351301 valid-rmse:0.39984 [30] train-rmse:0.333282 valid-rmse:0.383298 [39] train-rmse:0.329479 valid-rmse:0.380731 Iteration No: 724 ended. Search finished for the next optimal point. Time taken: 54.0124 Function value obtained: 0.3807 Current minimum: 0.3798 Iteration No: 725 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.2714231229880561, 'colsample_bytree': 0.75487487730568592, 'max_depth': 170, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38846 valid-rmse:4.40678 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.424206 valid-rmse:0.46772 [20] train-rmse:0.343685 valid-rmse:0.391573 [30] train-rmse:0.333583 valid-rmse:0.383612 [39] train-rmse:0.329464 valid-rmse:0.381323 Iteration No: 725 ended. Search finished for the next optimal point. Time taken: 53.9140 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 726 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.16878454216812822, 'colsample_bytree': 0.71458127376653002, 'max_depth': 162, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9927 valid-rmse:5.01026 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.862067 valid-rmse:0.890346 [20] train-rmse:0.362403 valid-rmse:0.410532 [30] train-rmse:0.333715 valid-rmse:0.38408 [39] train-rmse:0.329508 valid-rmse:0.381052 Iteration No: 726 ended. Search finished for the next optimal point. Time taken: 52.4841 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 727 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.16547160306851483, 'colsample_bytree': 0.64305833461587825, 'max_depth': 110, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01311 valid-rmse:5.03068 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.894645 valid-rmse:0.922193 [20] train-rmse:0.366793 valid-rmse:0.414414 [30] train-rmse:0.334122 valid-rmse:0.384272 [39] train-rmse:0.329384 valid-rmse:0.380892 Iteration No: 727 ended. Search finished for the next optimal point. Time taken: 53.4096 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 728 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.28033348974839067, 'colsample_bytree': 0.73886127985266659, 'max_depth': 80, 'subsample': 1.0, 'lambda': 42.492194453912575, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.33352 valid-rmse:4.35184 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.407507 valid-rmse:0.451123 [20] train-rmse:0.34369 valid-rmse:0.390372 [30] train-rmse:0.33563 valid-rmse:0.38398 [39] train-rmse:0.33207 valid-rmse:0.381809 Iteration No: 728 ended. Search finished for the next optimal point. Time taken: 54.2153 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 729 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 71, 'eta': 0.26159142590794315, 'colsample_bytree': 0.68315200545903965, 'max_depth': 98, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44686 valid-rmse:4.46513 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.441208 valid-rmse:0.483753 [20] train-rmse:0.343586 valid-rmse:0.392233 [30] train-rmse:0.332423 valid-rmse:0.383744 [39] train-rmse:0.327633 valid-rmse:0.381504 Iteration No: 729 ended. Search finished for the next optimal point. Time taken: 52.0013 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 730 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.16558480198647937, 'colsample_bytree': 0.64320546180322047, 'max_depth': 108, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01178 valid-rmse:5.02932 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.893065 valid-rmse:0.920866 [20] train-rmse:0.365593 valid-rmse:0.41371 [30] train-rmse:0.333303 valid-rmse:0.384085 [39] train-rmse:0.328975 valid-rmse:0.381074 Iteration No: 730 ended. Search finished for the next optimal point. Time taken: 52.5628 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 731 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 115, 'eta': 0.24366224431084202, 'colsample_bytree': 0.78146373273605652, 'max_depth': 169, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55318 valid-rmse:4.57142 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.481557 valid-rmse:0.522203 [20] train-rmse:0.347924 valid-rmse:0.395237 [30] train-rmse:0.334672 valid-rmse:0.384274 [39] train-rmse:0.329493 valid-rmse:0.380842 Iteration No: 731 ended. Search finished for the next optimal point. Time taken: 54.2883 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 732 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 114, 'eta': 0.2433861110862561, 'colsample_bytree': 0.77851674778484736, 'max_depth': 169, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55482 valid-rmse:4.57306 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.481452 valid-rmse:0.522245 [20] train-rmse:0.347073 valid-rmse:0.394858 [30] train-rmse:0.334214 valid-rmse:0.384236 [39] train-rmse:0.32923 valid-rmse:0.381124 Iteration No: 732 ended. Search finished for the next optimal point. Time taken: 54.2334 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 733 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 180, 'eta': 0.18234519723547352, 'colsample_bytree': 0.667548760367488, 'max_depth': 67, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91177 valid-rmse:4.92929 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.745812 valid-rmse:0.776479 [20] train-rmse:0.351345 valid-rmse:0.399994 [30] train-rmse:0.333207 valid-rmse:0.383409 [39] train-rmse:0.329762 valid-rmse:0.381209 Iteration No: 733 ended. Search finished for the next optimal point. Time taken: 55.1950 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 734 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 156, 'eta': 0.1681851418729669, 'colsample_bytree': 0.64881968091604902, 'max_depth': 91, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.99626 valid-rmse:5.01379 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.867996 valid-rmse:0.896272 [20] train-rmse:0.362896 valid-rmse:0.410975 [30] train-rmse:0.333091 valid-rmse:0.383668 [39] train-rmse:0.328841 valid-rmse:0.380569 Iteration No: 734 ended. Search finished for the next optimal point. Time taken: 54.4223 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 735 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 160, 'eta': 0.29999999999999999, 'colsample_bytree': 0.72598460643448459, 'max_depth': 94, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393131 valid-rmse:0.43784 [20] train-rmse:0.341873 valid-rmse:0.389685 [30] train-rmse:0.333541 valid-rmse:0.383629 [39] train-rmse:0.330031 valid-rmse:0.381787 Iteration No: 735 ended. Search finished for the next optimal point. Time taken: 52.6097 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 736 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 134, 'eta': 0.17896298074209499, 'colsample_bytree': 0.76509634029707074, 'max_depth': 174, 'subsample': 1.0, 'lambda': 31.052871681158642, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93528 valid-rmse:4.95317 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.795624 valid-rmse:0.826 [20] train-rmse:0.367487 valid-rmse:0.413792 [30] train-rmse:0.337432 valid-rmse:0.385998 [39] train-rmse:0.330871 valid-rmse:0.381129 Iteration No: 736 ended. Search finished for the next optimal point. Time taken: 51.1020 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 737 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.25819160140653263, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.46666 valid-rmse:4.48491 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.44703 valid-rmse:0.489098 [20] train-rmse:0.345448 valid-rmse:0.392588 [30] train-rmse:0.335183 valid-rmse:0.384304 [39] train-rmse:0.330932 valid-rmse:0.381838 Iteration No: 737 ended. Search finished for the next optimal point. Time taken: 55.0826 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 738 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 135, 'eta': 0.17910612701437872, 'colsample_bytree': 0.76554041562069508, 'max_depth': 174, 'subsample': 1.0, 'lambda': 31.108105671773711, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93443 valid-rmse:4.95232 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.794486 valid-rmse:0.824881 [20] train-rmse:0.367663 valid-rmse:0.413804 [30] train-rmse:0.337662 valid-rmse:0.386208 [39] train-rmse:0.330943 valid-rmse:0.381038 Iteration No: 738 ended. Search finished for the next optimal point. Time taken: 51.7886 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 739 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.16936492669366157, 'colsample_bytree': 0.65030087433192985, 'max_depth': 87, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98989 valid-rmse:5.00745 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.857116 valid-rmse:0.885669 [20] train-rmse:0.361768 valid-rmse:0.409896 [30] train-rmse:0.333708 valid-rmse:0.384013 [39] train-rmse:0.329577 valid-rmse:0.381098 Iteration No: 739 ended. Search finished for the next optimal point. Time taken: 54.3008 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 740 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 99, 'eta': 0.17940771542057118, 'colsample_bytree': 0.70369988284613028, 'max_depth': 68, 'subsample': 1.0, 'lambda': 24.937154356931302, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93242 valid-rmse:4.95034 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.790571 valid-rmse:0.820899 [20] train-rmse:0.365208 valid-rmse:0.412403 [30] train-rmse:0.335482 valid-rmse:0.385601 [39] train-rmse:0.328784 valid-rmse:0.381177 Iteration No: 740 ended. Search finished for the next optimal point. Time taken: 53.2488 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 741 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 180, 'eta': 0.18241009896002805, 'colsample_bytree': 0.66758109654180486, 'max_depth': 67, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91138 valid-rmse:4.92891 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.745244 valid-rmse:0.775898 [20] train-rmse:0.351149 valid-rmse:0.399749 [30] train-rmse:0.332973 valid-rmse:0.383417 [39] train-rmse:0.329589 valid-rmse:0.381148 Iteration No: 741 ended. Search finished for the next optimal point. Time taken: 55.5294 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 742 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 158, 'eta': 0.16504030316168969, 'colsample_bytree': 0.64504495426057962, 'max_depth': 121, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01602 valid-rmse:5.03349 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.899598 valid-rmse:0.927091 [20] train-rmse:0.367576 valid-rmse:0.415119 [30] train-rmse:0.334639 valid-rmse:0.384689 [39] train-rmse:0.329792 valid-rmse:0.381273 Iteration No: 742 ended. Search finished for the next optimal point. Time taken: 53.3008 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 743 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.22981822913882016, 'colsample_bytree': 0.80406655582905584, 'max_depth': 178, 'subsample': 1.0, 'lambda': 65.209597034210915, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.63441 valid-rmse:4.6526 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.520688 valid-rmse:0.559398 [20] train-rmse:0.349127 valid-rmse:0.396203 [30] train-rmse:0.335764 valid-rmse:0.384358 [39] train-rmse:0.330851 valid-rmse:0.380821 Iteration No: 743 ended. Search finished for the next optimal point. Time taken: 53.0575 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 744 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.17154618025466481, 'colsample_bytree': 0.66403798777621859, 'max_depth': 82, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9762 valid-rmse:4.99375 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.836625 valid-rmse:0.865315 [20] train-rmse:0.359489 valid-rmse:0.407523 [30] train-rmse:0.333159 valid-rmse:0.38327 [39] train-rmse:0.329174 valid-rmse:0.380552 Iteration No: 744 ended. Search finished for the next optimal point. Time taken: 56.1675 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 745 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.1702444879024555, 'colsample_bytree': 0.65322023600874413, 'max_depth': 84, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98464 valid-rmse:5.00221 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.84879 valid-rmse:0.877406 [20] train-rmse:0.360884 valid-rmse:0.409211 [30] train-rmse:0.333659 valid-rmse:0.38431 [39] train-rmse:0.329776 valid-rmse:0.381396 Iteration No: 745 ended. Search finished for the next optimal point. Time taken: 55.7059 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 746 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 177, 'eta': 0.22838495104133516, 'colsample_bytree': 0.79984707210677508, 'max_depth': 177, 'subsample': 1.0, 'lambda': 65.102910812993059, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64291 valid-rmse:4.6611 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.525428 valid-rmse:0.563935 [20] train-rmse:0.349351 valid-rmse:0.396483 [30] train-rmse:0.335958 valid-rmse:0.384541 [39] train-rmse:0.331272 valid-rmse:0.381366 Iteration No: 746 ended. Search finished for the next optimal point. Time taken: 54.1795 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 747 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 166, 'eta': 0.19325144181847906, 'colsample_bytree': 0.75230550636524218, 'max_depth': 61, 'subsample': 1.0, 'lambda': 22.798724537786018, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85 valid-rmse:4.86793 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.689301 valid-rmse:0.721968 [20] train-rmse:0.356122 valid-rmse:0.403127 [30] train-rmse:0.335898 valid-rmse:0.384896 [39] train-rmse:0.330565 valid-rmse:0.381253 Iteration No: 747 ended. Search finished for the next optimal point. Time taken: 55.8043 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 748 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 147, 'eta': 0.18607036354735063, 'colsample_bytree': 0.78352012715553121, 'max_depth': 177, 'subsample': 1.0, 'lambda': 37.099626540029035, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8933 valid-rmse:4.91142 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.742203 valid-rmse:0.773953 [20] train-rmse:0.363311 valid-rmse:0.409834 [30] train-rmse:0.33744 valid-rmse:0.385973 [39] train-rmse:0.331444 valid-rmse:0.381338 Iteration No: 748 ended. Search finished for the next optimal point. Time taken: 54.2166 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 749 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.27213421559475615, 'colsample_bytree': 0.75036579750434318, 'max_depth': 169, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.38425 valid-rmse:4.40257 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422412 valid-rmse:0.466013 [20] train-rmse:0.342972 valid-rmse:0.391029 [30] train-rmse:0.333244 valid-rmse:0.383312 [39] train-rmse:0.329495 valid-rmse:0.381277 Iteration No: 749 ended. Search finished for the next optimal point. Time taken: 55.9122 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 750 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 103, 'eta': 0.23688805442000685, 'colsample_bytree': 0.77723158728902941, 'max_depth': 167, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.59336 valid-rmse:4.61159 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.500139 valid-rmse:0.540247 [20] train-rmse:0.348118 valid-rmse:0.395826 [30] train-rmse:0.334485 valid-rmse:0.384309 [39] train-rmse:0.329244 valid-rmse:0.380923 Iteration No: 750 ended. Search finished for the next optimal point. Time taken: 55.2591 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 751 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 106, 'eta': 0.23706657849522561, 'colsample_bytree': 0.77793982629974034, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.5923 valid-rmse:4.61053 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.499299 valid-rmse:0.539281 [20] train-rmse:0.347691 valid-rmse:0.395544 [30] train-rmse:0.33449 valid-rmse:0.384594 [39] train-rmse:0.329197 valid-rmse:0.381214 Iteration No: 751 ended. Search finished for the next optimal point. Time taken: 53.7800 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 752 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 160, 'eta': 0.16536206147324087, 'colsample_bytree': 0.65491629537358498, 'max_depth': 125, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01311 valid-rmse:5.03066 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.895488 valid-rmse:0.923054 [20] train-rmse:0.36645 valid-rmse:0.414262 [30] train-rmse:0.333371 valid-rmse:0.383892 [39] train-rmse:0.329038 valid-rmse:0.380647 Iteration No: 752 ended. Search finished for the next optimal point. Time taken: 55.2765 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 753 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 174, 'eta': 0.16942341686245865, 'colsample_bytree': 0.72184656771906641, 'max_depth': 163, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98889 valid-rmse:5.00643 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.855765 valid-rmse:0.884256 [20] train-rmse:0.361661 valid-rmse:0.41006 [30] train-rmse:0.333744 valid-rmse:0.384102 [39] train-rmse:0.32979 valid-rmse:0.381436 Iteration No: 753 ended. Search finished for the next optimal point. Time taken: 55.6874 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 754 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 157, 'eta': 0.17574798182673051, 'colsample_bytree': 0.75430029968228784, 'max_depth': 73, 'subsample': 1.0, 'lambda': 20.753126331112828, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95403 valid-rmse:4.97196 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.819856 valid-rmse:0.849746 [20] train-rmse:0.36896 valid-rmse:0.415291 [30] train-rmse:0.337524 valid-rmse:0.386243 [39] train-rmse:0.331061 valid-rmse:0.381222 Iteration No: 754 ended. Search finished for the next optimal point. Time taken: 55.1730 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 755 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 181, 'eta': 0.22631285426362852, 'colsample_bytree': 0.80844063887143869, 'max_depth': 200, 'subsample': 1.0, 'lambda': 64.269760050352758, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.65519 valid-rmse:4.67338 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.533049 valid-rmse:0.57126 [20] train-rmse:0.350693 valid-rmse:0.397679 [30] train-rmse:0.336279 valid-rmse:0.38486 [39] train-rmse:0.331354 valid-rmse:0.381317 Iteration No: 755 ended. Search finished for the next optimal point. Time taken: 54.5705 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 756 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 173, 'eta': 0.16922062218226805, 'colsample_bytree': 0.7188151695544156, 'max_depth': 163, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9901 valid-rmse:5.00765 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.858463 valid-rmse:0.886729 [20] train-rmse:0.362351 valid-rmse:0.410404 [30] train-rmse:0.334087 valid-rmse:0.38407 [39] train-rmse:0.33 valid-rmse:0.381148 Iteration No: 756 ended. Search finished for the next optimal point. Time taken: 57.5093 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 757 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 192, 'eta': 0.23896341418471018, 'colsample_bytree': 0.80711253541021355, 'max_depth': 176, 'subsample': 1.0, 'lambda': 65.239372103855615, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.58012 valid-rmse:4.59833 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.491517 valid-rmse:0.531477 [20] train-rmse:0.347595 valid-rmse:0.394269 [30] train-rmse:0.335335 valid-rmse:0.383979 [39] train-rmse:0.331077 valid-rmse:0.381149 Iteration No: 757 ended. Search finished for the next optimal point. Time taken: 54.0992 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 758 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 158, 'eta': 0.16534597571955331, 'colsample_bytree': 0.65438166262091635, 'max_depth': 117, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.01419 valid-rmse:5.03167 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.896596 valid-rmse:0.92393 [20] train-rmse:0.367561 valid-rmse:0.414948 [30] train-rmse:0.33526 valid-rmse:0.385292 [39] train-rmse:0.330645 valid-rmse:0.381828 Iteration No: 758 ended. Search finished for the next optimal point. Time taken: 56.4919 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 759 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 184, 'eta': 0.18536796028649583, 'colsample_bytree': 0.66925165124081432, 'max_depth': 65, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89372 valid-rmse:4.91124 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.722575 valid-rmse:0.753831 [20] train-rmse:0.349658 valid-rmse:0.398048 [30] train-rmse:0.332718 valid-rmse:0.382844 [39] train-rmse:0.329349 valid-rmse:0.380545 Iteration No: 759 ended. Search finished for the next optimal point. Time taken: 55.3938 Function value obtained: 0.3805 Current minimum: 0.3798 Iteration No: 760 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 208, 'eta': 0.24099818436692402, 'colsample_bytree': 1.0, 'max_depth': 172, 'subsample': 1.0, 'lambda': 62.503826179818105, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.56776 valid-rmse:4.58601 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.484695 valid-rmse:0.524634 [20] train-rmse:0.347239 valid-rmse:0.393988 [30] train-rmse:0.335842 valid-rmse:0.384484 [39] train-rmse:0.331805 valid-rmse:0.381937 Iteration No: 760 ended. Search finished for the next optimal point. Time taken: 58.7171 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 761 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 133, 'eta': 0.2728872870025989, 'colsample_bytree': 0.74770760534696623, 'max_depth': 170, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37978 valid-rmse:4.39811 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.422242 valid-rmse:0.465849 [20] train-rmse:0.343185 valid-rmse:0.391488 [30] train-rmse:0.333446 valid-rmse:0.383898 [39] train-rmse:0.329258 valid-rmse:0.381647 Iteration No: 761 ended. Search finished for the next optimal point. Time taken: 57.4973 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 762 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 164, 'eta': 0.19317175096857325, 'colsample_bytree': 0.75028242257354272, 'max_depth': 61, 'subsample': 1.0, 'lambda': 22.968803007388129, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.85048 valid-rmse:4.86841 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.690313 valid-rmse:0.722763 [20] train-rmse:0.356378 valid-rmse:0.402776 [30] train-rmse:0.335698 valid-rmse:0.384114 [39] train-rmse:0.330695 valid-rmse:0.380652 Iteration No: 762 ended. Search finished for the next optimal point. Time taken: 55.8787 Function value obtained: 0.3807 Current minimum: 0.3798 Iteration No: 763 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 127, 'eta': 0.22937565217410644, 'colsample_bytree': 1.0, 'max_depth': 78, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.63762 valid-rmse:4.65583 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.523881 valid-rmse:0.56265 [20] train-rmse:0.349225 valid-rmse:0.39676 [30] train-rmse:0.335788 valid-rmse:0.385201 [39] train-rmse:0.330658 valid-rmse:0.38199 Iteration No: 763 ended. Search finished for the next optimal point. Time taken: 59.5006 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 764 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 92, 'eta': 0.22788485127878946, 'colsample_bytree': 0.80121289994979916, 'max_depth': 168, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.64677 valid-rmse:4.66498 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.530005 valid-rmse:0.568685 [20] train-rmse:0.349196 valid-rmse:0.396955 [30] train-rmse:0.334567 valid-rmse:0.384649 [39] train-rmse:0.329385 valid-rmse:0.381484 Iteration No: 764 ended. Search finished for the next optimal point. Time taken: 56.9427 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 765 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 188, 'eta': 0.18462453570023718, 'colsample_bytree': 0.67855297343131049, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89816 valid-rmse:4.91568 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.728698 valid-rmse:0.759544 [20] train-rmse:0.350141 valid-rmse:0.398391 [30] train-rmse:0.333201 valid-rmse:0.383026 [39] train-rmse:0.329624 valid-rmse:0.380744 Iteration No: 765 ended. Search finished for the next optimal point. Time taken: 58.7846 Function value obtained: 0.3807 Current minimum: 0.3798 Iteration No: 766 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 189, 'eta': 0.18445638009806703, 'colsample_bytree': 0.6807917145705451, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89916 valid-rmse:4.91668 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.729607 valid-rmse:0.76053 [20] train-rmse:0.350235 valid-rmse:0.398697 [30] train-rmse:0.33301 valid-rmse:0.383084 [39] train-rmse:0.329655 valid-rmse:0.380893 Iteration No: 766 ended. Search finished for the next optimal point. Time taken: 57.6721 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 767 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 187, 'eta': 0.18431610348211083, 'colsample_bytree': 0.67800243919424052, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9 valid-rmse:4.91752 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.730397 valid-rmse:0.761251 [20] train-rmse:0.350151 valid-rmse:0.398412 [30] train-rmse:0.33286 valid-rmse:0.38283 [39] train-rmse:0.329358 valid-rmse:0.380603 Iteration No: 767 ended. Search finished for the next optimal point. Time taken: 59.3901 Function value obtained: 0.3806 Current minimum: 0.3798 Iteration No: 768 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.19333138565800573, 'colsample_bytree': 0.75065380416736716, 'max_depth': 61, 'subsample': 1.0, 'lambda': 23.345374790215704, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84955 valid-rmse:4.86748 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.68872 valid-rmse:0.721265 [20] train-rmse:0.355986 valid-rmse:0.402643 [30] train-rmse:0.335713 valid-rmse:0.384347 [39] train-rmse:0.330686 valid-rmse:0.380974 Iteration No: 768 ended. Search finished for the next optimal point. Time taken: 58.3078 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 769 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 138, 'eta': 0.26132117373606667, 'colsample_bytree': 0.76765948702146103, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.44836 valid-rmse:4.46666 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.44219 valid-rmse:0.484347 [20] train-rmse:0.345426 valid-rmse:0.392686 [30] train-rmse:0.334167 valid-rmse:0.383671 [39] train-rmse:0.329792 valid-rmse:0.380906 Iteration No: 769 ended. Search finished for the next optimal point. Time taken: 56.6640 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 770 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 148, 'eta': 0.17582040559941642, 'colsample_bytree': 0.63606171502815956, 'max_depth': 73, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.95206 valid-rmse:4.96953 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.798896 valid-rmse:0.828639 [20] train-rmse:0.354692 valid-rmse:0.403735 [30] train-rmse:0.332401 valid-rmse:0.383376 [39] train-rmse:0.328621 valid-rmse:0.380922 Iteration No: 770 ended. Search finished for the next optimal point. Time taken: 60.1868 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 771 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 193, 'eta': 0.18460341908146111, 'colsample_bytree': 0.68674102603466303, 'max_depth': 66, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.89829 valid-rmse:4.91581 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.728943 valid-rmse:0.759956 [20] train-rmse:0.350798 valid-rmse:0.399244 [30] train-rmse:0.333748 valid-rmse:0.383688 [39] train-rmse:0.330221 valid-rmse:0.381244 Iteration No: 771 ended. Search finished for the next optimal point. Time taken: 58.7407 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 772 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.29999999999999999, 'colsample_bytree': 0.73276423582923478, 'max_depth': 83, 'subsample': 1.0, 'lambda': 49.948365015748244, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21716 valid-rmse:4.23554 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.389687 valid-rmse:0.434141 [20] train-rmse:0.343156 valid-rmse:0.389645 [30] train-rmse:0.335286 valid-rmse:0.383883 [39] train-rmse:0.332327 valid-rmse:0.382171 Iteration No: 772 ended. Search finished for the next optimal point. Time taken: 57.4684 Function value obtained: 0.3822 Current minimum: 0.3798 Iteration No: 773 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 128, 'eta': 0.27404589722782025, 'colsample_bytree': 0.73153536700227662, 'max_depth': 91, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.37302 valid-rmse:4.39133 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.420825 valid-rmse:0.46426 [20] train-rmse:0.343002 valid-rmse:0.390947 [30] train-rmse:0.333348 valid-rmse:0.383558 [39] train-rmse:0.32905 valid-rmse:0.381425 Iteration No: 773 ended. Search finished for the next optimal point. Time taken: 56.2387 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 774 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 11, 'eta': 0.24406500967412828, 'colsample_bytree': 0.43115043036392509, 'max_depth': 199, 'subsample': 0.82514108498155159, 'lambda': 83.363208732617338, 'gamma': 2, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.55111 valid-rmse:4.56949 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.486678 valid-rmse:0.527522 [20] train-rmse:0.355707 valid-rmse:0.402349 [30] train-rmse:0.343475 valid-rmse:0.391044 [39] train-rmse:0.339752 valid-rmse:0.388082 Iteration No: 774 ended. Search finished for the next optimal point. Time taken: 53.6788 Function value obtained: 0.3881 Current minimum: 0.3798 Iteration No: 775 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 198, 'eta': 0.18310741153223473, 'colsample_bytree': 0.69866401595732208, 'max_depth': 67, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.90721 valid-rmse:4.92474 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.740185 valid-rmse:0.770997 [20] train-rmse:0.351556 valid-rmse:0.399759 [30] train-rmse:0.333787 valid-rmse:0.383637 [39] train-rmse:0.330332 valid-rmse:0.381362 Iteration No: 775 ended. Search finished for the next optimal point. Time taken: 58.6865 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 776 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 142, 'eta': 0.27663002775826329, 'colsample_bytree': 0.75767098093347984, 'max_depth': 170, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.35759 valid-rmse:4.37593 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.416513 valid-rmse:0.46003 [20] train-rmse:0.344073 valid-rmse:0.391849 [30] train-rmse:0.333979 valid-rmse:0.383814 [39] train-rmse:0.330038 valid-rmse:0.38142 Iteration No: 776 ended. Search finished for the next optimal point. Time taken: 56.0431 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 777 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 172, 'eta': 0.16945710012754781, 'colsample_bytree': 0.72636679394277381, 'max_depth': 166, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98869 valid-rmse:5.00624 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.855851 valid-rmse:0.884302 [20] train-rmse:0.36202 valid-rmse:0.410214 [30] train-rmse:0.333796 valid-rmse:0.384219 [39] train-rmse:0.329887 valid-rmse:0.381484 Iteration No: 777 ended. Search finished for the next optimal point. Time taken: 59.7276 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 778 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 130, 'eta': 0.17175276783340715, 'colsample_bytree': 0.61487859347085194, 'max_depth': 80, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.975 valid-rmse:4.99257 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.834748 valid-rmse:0.863751 [20] train-rmse:0.358238 valid-rmse:0.407525 [30] train-rmse:0.332183 valid-rmse:0.383883 [39] train-rmse:0.328505 valid-rmse:0.381488 Iteration No: 778 ended. Search finished for the next optimal point. Time taken: 59.6795 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 779 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 160, 'eta': 0.29999999999999999, 'colsample_bytree': 0.72386140706190616, 'max_depth': 95, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393131 valid-rmse:0.43784 [20] train-rmse:0.341873 valid-rmse:0.389685 [30] train-rmse:0.333541 valid-rmse:0.383629 [39] train-rmse:0.330031 valid-rmse:0.381787 Iteration No: 779 ended. Search finished for the next optimal point. Time taken: 59.5108 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 780 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 171, 'eta': 0.16993704556007716, 'colsample_bytree': 0.6730268299606863, 'max_depth': 88, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98582 valid-rmse:5.00338 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.852137 valid-rmse:0.880555 [20] train-rmse:0.361734 valid-rmse:0.409673 [30] train-rmse:0.333914 valid-rmse:0.384047 [39] train-rmse:0.329825 valid-rmse:0.381229 Iteration No: 780 ended. Search finished for the next optimal point. Time taken: 60.1287 Function value obtained: 0.3812 Current minimum: 0.3798 Iteration No: 781 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 124, 'eta': 0.22609957533699684, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.65706 valid-rmse:4.67526 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.535318 valid-rmse:0.573608 [20] train-rmse:0.350493 valid-rmse:0.398044 [30] train-rmse:0.335828 valid-rmse:0.385332 [39] train-rmse:0.330563 valid-rmse:0.38185 Iteration No: 781 ended. Search finished for the next optimal point. Time taken: 60.4692 Function value obtained: 0.3819 Current minimum: 0.3798 Iteration No: 782 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 139, 'eta': 0.19867925921897989, 'colsample_bytree': 0.79616033143223475, 'max_depth': 175, 'subsample': 1.0, 'lambda': 53.553392208784565, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.8189 valid-rmse:4.83705 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.661803 valid-rmse:0.695729 [20] train-rmse:0.357469 valid-rmse:0.404404 [30] train-rmse:0.337249 valid-rmse:0.385989 [39] train-rmse:0.331132 valid-rmse:0.381301 Iteration No: 782 ended. Search finished for the next optimal point. Time taken: 59.7051 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 783 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 103, 'eta': 0.18264759891086985, 'colsample_bytree': 0.7166457851325202, 'max_depth': 65, 'subsample': 1.0, 'lambda': 27.686718308893866, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91325 valid-rmse:4.93114 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.765652 valid-rmse:0.796667 [20] train-rmse:0.363016 valid-rmse:0.410323 [30] train-rmse:0.335549 valid-rmse:0.385234 [39] train-rmse:0.329043 valid-rmse:0.380661 Iteration No: 783 ended. Search finished for the next optimal point. Time taken: 58.3905 Function value obtained: 0.3807 Current minimum: 0.3798 Iteration No: 784 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 152, 'eta': 0.19378476248574633, 'colsample_bytree': 0.75508619630726481, 'max_depth': 61, 'subsample': 1.0, 'lambda': 27.081692520149218, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84699 valid-rmse:4.86489 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.68677 valid-rmse:0.719627 [20] train-rmse:0.356289 valid-rmse:0.402958 [30] train-rmse:0.335716 valid-rmse:0.384437 [39] train-rmse:0.330524 valid-rmse:0.380892 Iteration No: 784 ended. Search finished for the next optimal point. Time taken: 58.9787 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 785 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 185, 'eta': 0.18606237005234572, 'colsample_bytree': 0.67269814712124454, 'max_depth': 65, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.88958 valid-rmse:4.90709 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.717373 valid-rmse:0.748742 [20] train-rmse:0.349304 valid-rmse:0.397837 [30] train-rmse:0.332939 valid-rmse:0.383082 [39] train-rmse:0.329639 valid-rmse:0.380937 Iteration No: 785 ended. Search finished for the next optimal point. Time taken: 60.0413 Function value obtained: 0.3809 Current minimum: 0.3798 Iteration No: 786 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 101, 'eta': 0.1817361910213596, 'colsample_bytree': 0.71346032621143241, 'max_depth': 66, 'subsample': 1.0, 'lambda': 27.095484442385079, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.91865 valid-rmse:4.93654 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.772565 valid-rmse:0.803396 [20] train-rmse:0.363185 valid-rmse:0.410614 [30] train-rmse:0.335511 valid-rmse:0.385468 [39] train-rmse:0.328802 valid-rmse:0.380812 Iteration No: 786 ended. Search finished for the next optimal point. Time taken: 56.3060 Function value obtained: 0.3808 Current minimum: 0.3798 Iteration No: 787 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 300, 'eta': 0.26733138775559284, 'colsample_bytree': 0.79802813007540863, 'max_depth': 200, 'subsample': 1.0, 'lambda': 39.2324796727058, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.41057 valid-rmse:4.42886 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.42589 valid-rmse:0.468531 [20] train-rmse:0.344554 valid-rmse:0.390925 [30] train-rmse:0.335926 valid-rmse:0.383917 [39] train-rmse:0.332418 valid-rmse:0.381641 Iteration No: 787 ended. Search finished for the next optimal point. Time taken: 61.6746 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 788 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 155, 'eta': 0.19416311622631213, 'colsample_bytree': 0.75819310442225407, 'max_depth': 61, 'subsample': 1.0, 'lambda': 26.974656761455545, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.84474 valid-rmse:4.86265 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.684393 valid-rmse:0.717357 [20] train-rmse:0.356179 valid-rmse:0.403064 [30] train-rmse:0.335826 valid-rmse:0.384788 [39] train-rmse:0.330534 valid-rmse:0.381538 Iteration No: 788 ended. Search finished for the next optimal point. Time taken: 57.2606 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 789 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 172, 'eta': 0.16938732970694612, 'colsample_bytree': 0.72873025539507386, 'max_depth': 165, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9891 valid-rmse:5.00666 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.856528 valid-rmse:0.885005 [20] train-rmse:0.362006 valid-rmse:0.410222 [30] train-rmse:0.334137 valid-rmse:0.384707 [39] train-rmse:0.329853 valid-rmse:0.381624 Iteration No: 789 ended. Search finished for the next optimal point. Time taken: 61.1641 Function value obtained: 0.3816 Current minimum: 0.3798 Iteration No: 790 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 162, 'eta': 0.17038817327727998, 'colsample_bytree': 1.0, 'max_depth': 76, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.98309 valid-rmse:5.00064 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.846745 valid-rmse:0.875451 [20] train-rmse:0.360598 valid-rmse:0.409372 [30] train-rmse:0.334 valid-rmse:0.385017 [39] train-rmse:0.330188 valid-rmse:0.382462 Iteration No: 790 ended. Search finished for the next optimal point. Time taken: 73.8325 Function value obtained: 0.3825 Current minimum: 0.3798 Iteration No: 791 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 99, 'eta': 0.17975917852645296, 'colsample_bytree': 0.70566139340831824, 'max_depth': 68, 'subsample': 1.0, 'lambda': 25.521354626811839, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.93035 valid-rmse:4.94827 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.78811 valid-rmse:0.818727 [20] train-rmse:0.365191 valid-rmse:0.412634 [30] train-rmse:0.335967 valid-rmse:0.386369 [39] train-rmse:0.329504 valid-rmse:0.381774 Iteration No: 791 ended. Search finished for the next optimal point. Time taken: 61.5829 Function value obtained: 0.3818 Current minimum: 0.3798 Iteration No: 792 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 148, 'eta': 0.29999999999999999, 'colsample_bytree': 0.68688740612207067, 'max_depth': 170, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.21908 valid-rmse:4.23747 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.393857 valid-rmse:0.438409 [20] train-rmse:0.341909 valid-rmse:0.389839 [30] train-rmse:0.333094 valid-rmse:0.383432 [39] train-rmse:0.329564 valid-rmse:0.381485 Iteration No: 792 ended. Search finished for the next optimal point. Time taken: 61.8673 Function value obtained: 0.3815 Current minimum: 0.3798 Iteration No: 793 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 132, 'eta': 0.18104552241439564, 'colsample_bytree': 0.77171026580433433, 'max_depth': 175, 'subsample': 1.0, 'lambda': 34.400195647664511, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.9231 valid-rmse:4.94121 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.779886 valid-rmse:0.810695 [20] train-rmse:0.366672 valid-rmse:0.413306 [30] train-rmse:0.337372 valid-rmse:0.386296 [39] train-rmse:0.330869 valid-rmse:0.381378 Iteration No: 793 ended. Search finished for the next optimal point. Time taken: 59.3698 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 794 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 160, 'eta': 0.16589083380324054, 'colsample_bytree': 0.65974570281043121, 'max_depth': 116, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:5.00994 valid-rmse:5.0275 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.89046 valid-rmse:0.918232 [20] train-rmse:0.366293 valid-rmse:0.414127 [30] train-rmse:0.33421 valid-rmse:0.384589 [39] train-rmse:0.32975 valid-rmse:0.381304 Iteration No: 794 ended. Search finished for the next optimal point. Time taken: 62.6343 Function value obtained: 0.3813 Current minimum: 0.3798 Iteration No: 795 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 127, 'eta': 0.17310552347857378, 'colsample_bytree': 0.58784310621592328, 'max_depth': 77, 'subsample': 1.0, 'lambda': 0.10000000000000001, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.96699 valid-rmse:4.98453 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.821753 valid-rmse:0.851186 [20] train-rmse:0.356101 valid-rmse:0.405807 [30] train-rmse:0.331628 valid-rmse:0.38352 [39] train-rmse:0.327798 valid-rmse:0.380954 Iteration No: 795 ended. Search finished for the next optimal point. Time taken: 62.7676 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 796 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 170, 'eta': 0.24834426187830611, 'colsample_bytree': 0.77383737912122741, 'max_depth': 86, 'subsample': 1.0, 'lambda': 58.906577883538709, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.52423 valid-rmse:4.54246 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.464814 valid-rmse:0.50584 [20] train-rmse:0.345814 valid-rmse:0.392826 [30] train-rmse:0.334654 valid-rmse:0.383546 [39] train-rmse:0.330353 valid-rmse:0.380984 Iteration No: 796 ended. Search finished for the next optimal point. Time taken: 62.4793 Function value obtained: 0.3810 Current minimum: 0.3798 Iteration No: 797 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 72, 'eta': 0.2570899097226641, 'colsample_bytree': 0.71280845518629699, 'max_depth': 103, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.47355 valid-rmse:4.49182 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.450003 valid-rmse:0.492421 [20] train-rmse:0.343981 valid-rmse:0.392635 [30] train-rmse:0.332352 valid-rmse:0.38399 [39] train-rmse:0.327355 valid-rmse:0.381387 Iteration No: 797 ended. Search finished for the next optimal point. Time taken: 58.1514 Function value obtained: 0.3814 Current minimum: 0.3798 Iteration No: 798 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 179, 'eta': 0.17990512771427042, 'colsample_bytree': 0.77562287271664321, 'max_depth': 69, 'subsample': 1.0, 'lambda': 21.049980701039953, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.92932 valid-rmse:4.94724 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.785763 valid-rmse:0.816231 [20] train-rmse:0.365276 valid-rmse:0.411694 [30] train-rmse:0.337287 valid-rmse:0.385725 [39] train-rmse:0.331229 valid-rmse:0.381124 Iteration No: 798 ended. Search finished for the next optimal point. Time taken: 59.5721 Function value obtained: 0.3811 Current minimum: 0.3798 Iteration No: 799 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 98, 'eta': 0.25332343208087205, 'colsample_bytree': 0.77109968133095608, 'max_depth': 133, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.49589 valid-rmse:4.51414 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.458027 valid-rmse:0.500231 [20] train-rmse:0.346147 valid-rmse:0.394573 [30] train-rmse:0.333876 valid-rmse:0.384842 [39] train-rmse:0.328751 valid-rmse:0.381955 Iteration No: 799 ended. Search finished for the next optimal point. Time taken: 60.4233 Function value obtained: 0.3820 Current minimum: 0.3798 Iteration No: 800 started. Searching for the next optimal point. Next set of params..... {'min_child_weight': 167, 'eta': 0.26122138782936311, 'colsample_bytree': 1.0, 'max_depth': 200, 'subsample': 1.0, 'lambda': 90.0, 'gamma': 0, 'nthread': 8, 'booster': 'gbtree', 'silent': 1, 'eval_metric': 'rmse', 'objective': 'reg:linear'} [0] train-rmse:4.4487 valid-rmse:4.46696 Multiple eval metrics have been passed: 'valid-rmse' will be used for early stopping. Will train until valid-rmse hasn't improved in 50 rounds. [10] train-rmse:0.440733 valid-rmse:0.482894 [20] train-rmse:0.345128 valid-rmse:0.392153 [30] train-rmse:0.335195 valid-rmse:0.384017 [39] train-rmse:0.331026 valid-rmse:0.381611 Iteration No: 800 ended. Search finished for the next optimal point. Time taken: 15.8990 Function value obtained: 0.3816 Current minimum: 0.3798 CPU times: user 1d 45min 19s, sys: 1h 33min 23s, total: 1d 2h 18min 42s Wall time: 6h 30min 17s
In [148]:
print('Best Params=',result.x)
print('Best Score=',result.fun)
from skopt.plots import plot_convergence
_ = plt.figure(figsize=(18,6))
_ = plot_convergence(result, yscale='log')
Best Params= [133, 0.17936020611338641, 0.70459161599199072, 64, 1.0, 24.2701922969149, 0] Best Score= 0.379799721793
XGBoost model hyperparameter search - RandomSearch with cutdown data¶
In [ ]:
%%time
# XGBoost with Randomized search and 5-fold CV
# Tuning Approach
# set all params to default (incl learning rate=0.1)
# tune min_child_weight and max_depth together for [1,2,3,4,5,6]
# tune gamma from 0-1
# tune subsample and colsample_bytree around 0.5-1
# tune reg_alpha, reg_lambda from 0-20
import xgboost as xgb
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import mean_squared_error
params = {
'learning_rate': np.linspace(0.05, 0.22, 10),
'min_child_weight': np.linspace(50, 90, 10).astype(int),
'max_depth': np.linspace(10, 80, 10).astype(int),
'gamma': np.linspace(0, 0.1, 3),
'subsample': np.linspace(0.5, 0.8, 5),
'colsample_bytree': np.linspace(0.3, 1, 8),
'reg_alpha': np.linspace(0, 2, 5),
'reg_lambda': np.linspace(0, 45, 5),
}
XGBmodel = xgb.XGBRegressor(base_score=np.mean(ytrain_small), n_estimators=100, eval_metric='rmse',
random_state=1, n_jobs=1)
# XGBmodel = GridSearchCV(XGBmodel, cv=5, param_grid=params, verbose=2)
XGBmodel = RandomizedSearchCV(XGBmodel, cv=5, n_iter=500, n_jobs=-1, param_distributions=params, verbose=1, random_state=1)
XGBmodel.fit(Xtrain_small, ytrain_small)
print(XGBmodel.best_estimator_)
print(XGBmodel.best_params_)
XGBtrain_preds = XGBmodel.predict(Xtrain_small)
XGBvalid_preds = XGBmodel.predict(Xvalid)
print('\nTotal training size',len(Xtrain_small))
print('Train RMSE =', round(np.sqrt(mean_squared_error(ytrain_small, XGBtrain_preds)),6))
print('Validn RMSE =', round(np.sqrt(mean_squared_error(yvalid, XGBvalid_preds)),6))
In [ ]:
feature_importance = pd.Series(index = Xtrain.columns, data = XGBmodel.best_estimator_.feature_importances_)
_ = feature_importance.sort_values(ascending=False).head(30).plot(kind='bar', color="r", figsize = (18,6))
In [ ]:
XGBlog_test_preds = XGBmodel.predict(Xtest)
XGBtest_preds = np.exp(XGBlog_test_preds) - 1
XGBpreds = pd.DataFrame({'id': test_id, 'trip_duration': XGBtest_preds})
XGBpreds.to_csv('XG_tuned_submission.csv.gz', index=False, compression='gzip')
Ridge Regression¶
Works very poorly as larger values of distance_great_circle cause massive increases in duration predictions
In [ ]:
%%time
from sklearn.linear_model import RidgeCV, Ridge
from sklearn.metrics import mean_squared_error
# use CV to find best alpha on train data, then just plug into Ridge call below for faster runtime
#alphas = np.linspace(0.1, 5, 10)
#RRmodel = RidgeCV(cv=5, alphas=alphas, scoring='neg_mean_squared_error')
RRmodel = Ridge(alpha=2, random_state=1)
RRmodel.fit(Xtrain, ytrain)
RRtrain_preds = RRmodel.predict(Xtrain)
RRvalid_preds = RRmodel.predict(Xvalid)
RRtrain_score = round(np.sqrt(mean_squared_error(ytrain, RRtrain_preds)),6)
RRvalid_score = round(np.sqrt(mean_squared_error(yvalid, RRvalid_preds)),6)
print('Train RMSE =', RRtrain_score)
print('Test RMSE =', RRvalid_score)
#RRmodel.alphas
#RRmodel.alpha_
# plot feature importances
feature_importance = pd.Series(index = Xtrain.columns, data = np.abs(RRmodel.coef_))
_ = feature_importance.sort_values(ascending=False).head(30).plot(kind='bar', color="r", figsize = (18,6))
In [ ]:
# create Ridge Regression file for submission
RRlog_test_preds = RRmodel.predict(Xtest)
RRtest_preds = np.abs(np.exp(RRlog_test_preds)-1)
RRpreds = pd.DataFrame({'id': test_id, 'trip_duration': RRtest_preds})
RRpreds.to_csv('RR_submission.csv.gz', index=False, compression='gzip')
print('File created')
In [ ]:
# show ridge coefficients as a function of regularisation
alphas = np.logspace(-3, 9, 15)
coefs = []
for a in alphas:
ridge = Ridge(alpha=a, fit_intercept=False)
_ = ridge.fit(Xtrain, ytrain)
coefs.append(ridge.coef_)
_ = plt.figure(figsize=(18,6))
ax = plt.gca()
_ = ax.plot(alphas, coefs)
_ = ax.set_xscale('log')
_ = ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis
_ = plt.xlabel('alpha')
_ = plt.ylabel('weights')
_ = plt.title('Ridge coefficients as a function of l2 regularization')
In [ ]:
# check the largest prediction record and calculate to see where overestimate is
# problem is distance_great_circle which distorts predictions for large distances
index = RRvalid_preds.argmax()
row = Xvalid.iloc[index]
result = RRmodel.intercept_
print('Intercept= ', round(result,4))
for name, item, coef in zip(feature_names, row, RRmodel.coef_):
print('{0:25} {1:9} * {2:9} = {3:9}'.format(name, round(coef,4), round(np.float(item),4),
round(np.float(item) * coef,4)))
result = result + np.float(item) * coef
print('\nPrediction= {0}, calculated result using coefficients= {1}'.format(RRvalid_preds[index], result))
Xv = scaler.inverse_transform(Xvalid)
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
Comments
comments powered by Disqus